Table of Contents

Introduction .. 2
Project Results .. 3
GIS Data Layers, GISAnalysis, and Project Deliverables .. 7
 GIS Data Layers ... 7
 Project Deliverables .. 10
Project Process .. 11
 Project Methodology .. 11
 Post Workshop Processing ... 14
Documentation and Metadata .. 15
Appendix A – Wildlife Linkage Area Index Map and Map Tiles
Appendix B – Detailed Wildlife Linkage Area Maps with Detailed Comments
Appendix C – Expert Workshop Participants
Appendix D – Detailed GIS Methodology (Metadata and Tools)

Tables
Table 1. ITD2 Wildlife Linkage Areas .. 5

Figures
Figure 1. ITD2 Study Area ... 3
Figure 2. ITD2 Wildlife Linkage Areas .. 4
Introduction

Geodata Services, Inc. worked with Wayne Melquist, Bill Ruediger, Greg Burak of the Idaho Department of Fish and Game, and Shawn Smith and Zach Funkhouser of the Idaho Transportation District to complete an assessment of wildlife linkage areas in the Idaho Transportation Department’s District 2 (ITD2). Geodata Services, Inc. (Geodata) supported two expert workshops to identify wildlife linkage areas for ITD2. The process involved assembly of GIS layers and imagery, and GIS analysis to develop a wildlife linkage zone model. The overall assessment area included a four mile area on either side of the state and federal highways within 5 counties in central Idaho (see Figure 1). The purpose of the assessment was to identify opportunities and needs for protecting or creating appropriate movement habitats for wildlife, identify linkage areas for wildlife, and address areas of interest along the highway segments relating to wildlife habitat, development pressure and public safety. A total of 70 wildlife linkage areas were identified in ITD2, for a total of approximately 234 miles of linear road segments (see Figure 2). The ITD2 wildlife linkage areas include 5 high priority linkage areas, 9 moderate priority linkage areas, and 56 low priority linkage areas. The process followed a rapid assessment format that has been utilized throughout Idaho and Western Montana (Ruediger, 2004).

The report is organized into four sections. Following the introduction, the second section provides a brief overview on the project results. The third section includes descriptions of the data layers used in the project and the GIS project deliverables. Section four includes a summary of the process used to derive the wildlife linkage areas and the project methodology. Appendix A includes the ITD2 wildlife linkage area index map and map tiles. Appendix B includes the detailed 3D maps, the detailed ownership maps, and the detailed data and comments on each wildlife linkage area. Appendix C includes a list of participants in the expert workshops. Appendix D includes the detailed GIS methodology, including the metadata and the linkage zone model tools. Accompanying the report is the wildlife linkage area GIS polygon layer and the ESRI grid layers representing the final linkage zone model.
Project Results

Figures 1 and 2 show an overview of the project area. See Appendix A for mid-scale maps of the wildlife linkage areas, along with an index of the map tiles and Appendix B for detailed 3D maps, detailed ownership maps, and detailed data and comments on each wildlife linkage area, along with the species of interest in each wildlife linkage area.

Figure 1. ITD2 Study Area

The wildlife linkage areas were usually not discreetly defined areas confined by vegetative or topographic features. More typically, they were general areas of highway or road segments identified between mileposts and mapped in the expert workshops. In some instances actual wildlife crossings of highways are at well defined locations, such
as a bridge or overpass, although they may cross laterally over a broad area or through funnel-shaped areas. To standardize the wildlife linkage areas recorded in the expert workshops, each identified road segment was buffered by 500 meters.

ITD2 includes approximately 684 miles of federal and state highways. A total of 70 wildlife linkage areas were identified in ITD2, for a total of approximately 234 miles of linear road segments (see Figure 2). The ITD2 wildlife linkage areas include 5 high priority linkage areas, 9 moderate priority linkage areas, and 56 low priority linkage areas.

Figure 2. ITD2 Wildlife Linkage Areas
Each wildlife linkage area was assigned a unique identification number along with a name, usually of a nearby geographic feature. The lowest milepost within each wildlife linkage area and the associated highway are included in Table 1.

Table 1. ITD2 Wildlife Linkage Areas

<table>
<thead>
<tr>
<th>ID</th>
<th>NAME</th>
<th>MILEPOST</th>
<th>HIGHWAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID2-01</td>
<td>Marsh Hill</td>
<td>369</td>
<td>95</td>
</tr>
<tr>
<td>ID2-02</td>
<td>Crook's Hill</td>
<td>355</td>
<td>95</td>
</tr>
<tr>
<td>ID2-03</td>
<td>Steak House Hill</td>
<td>350</td>
<td>95</td>
</tr>
<tr>
<td>ID2-04</td>
<td>Thorn Creek</td>
<td>340</td>
<td>95</td>
</tr>
<tr>
<td>ID2-05</td>
<td>Hill's Crossing</td>
<td>324</td>
<td>95</td>
</tr>
<tr>
<td>ID2-06</td>
<td>Hatwai Canyon</td>
<td>319</td>
<td>95</td>
</tr>
<tr>
<td>ID2-07</td>
<td>Hathway Creek</td>
<td>308</td>
<td>95</td>
</tr>
<tr>
<td>ID2-08</td>
<td>Spalding</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>ID2-09</td>
<td>Spalding Park</td>
<td>302</td>
<td>95</td>
</tr>
<tr>
<td>ID2-10</td>
<td>Lapwai</td>
<td>300</td>
<td>95</td>
</tr>
<tr>
<td>ID2-11</td>
<td>MP 299</td>
<td>299</td>
<td>95</td>
</tr>
<tr>
<td>ID2-12</td>
<td>Sweet Water Creek</td>
<td>295</td>
<td>95</td>
</tr>
<tr>
<td>ID2-13</td>
<td>Jacques</td>
<td>294</td>
<td>95</td>
</tr>
<tr>
<td>ID2-14</td>
<td>Cul de Sac Canyon</td>
<td>280</td>
<td>95</td>
</tr>
<tr>
<td>ID2-15</td>
<td>Lawyer Canyon</td>
<td>267</td>
<td>95</td>
</tr>
<tr>
<td>ID2-16</td>
<td>Salmon River</td>
<td>198</td>
<td>95</td>
</tr>
<tr>
<td>ID2-17</td>
<td>Race Creek</td>
<td>197</td>
<td>95</td>
</tr>
<tr>
<td>ID2-18</td>
<td>Little Salmon</td>
<td>191</td>
<td>95</td>
</tr>
<tr>
<td>ID2-19</td>
<td>Hyatt Creek</td>
<td>177</td>
<td>95</td>
</tr>
<tr>
<td>ID2-20</td>
<td>Cottonwood Creek</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>ID2-21</td>
<td>Jack's Creek</td>
<td>28</td>
<td>12</td>
</tr>
<tr>
<td>ID2-22</td>
<td>Big Canyon Creek</td>
<td>35</td>
<td>12</td>
</tr>
<tr>
<td>ID2-23</td>
<td>Orofino</td>
<td>39</td>
<td>12</td>
</tr>
<tr>
<td>ID2-24</td>
<td>Five Mile Creek</td>
<td>54</td>
<td>12</td>
</tr>
<tr>
<td>ID2-25</td>
<td>Six Mile Creek</td>
<td>59</td>
<td>12</td>
</tr>
<tr>
<td>ID2-26</td>
<td>Kamiah</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>ID2-27</td>
<td>Heart of the Monster</td>
<td>68</td>
<td>12</td>
</tr>
<tr>
<td>ID2-28</td>
<td>Maggie Creek</td>
<td>77</td>
<td>12</td>
</tr>
<tr>
<td>ID2-29</td>
<td>07's</td>
<td>83</td>
<td>12</td>
</tr>
<tr>
<td>ID2-30</td>
<td>Lowell</td>
<td>95</td>
<td>12</td>
</tr>
<tr>
<td>ID2-31</td>
<td>Deadman Creek</td>
<td>106</td>
<td>12</td>
</tr>
<tr>
<td>ID2-32</td>
<td>Wilderness Gateway</td>
<td>120</td>
<td>12</td>
</tr>
<tr>
<td>ID2-33</td>
<td>Big Pond</td>
<td>126</td>
<td>12</td>
</tr>
<tr>
<td>ID2-34</td>
<td>Bald Mountain</td>
<td>128</td>
<td>12</td>
</tr>
<tr>
<td>ID2-35</td>
<td>Lost Creek</td>
<td>136</td>
<td>12</td>
</tr>
<tr>
<td>ID2-36</td>
<td>Indian Grave</td>
<td>139</td>
<td>12</td>
</tr>
<tr>
<td>ID2-37</td>
<td>Post Office Creek</td>
<td>144</td>
<td>12</td>
</tr>
<tr>
<td>ID2-38</td>
<td>Colgate Licks</td>
<td>148</td>
<td>12</td>
</tr>
<tr>
<td>ID2-39</td>
<td>Doe Creek</td>
<td>154</td>
<td>12</td>
</tr>
<tr>
<td>ID2-40</td>
<td>Badger Creek</td>
<td>156</td>
<td>12</td>
</tr>
<tr>
<td>ID2-41</td>
<td>Wendover Creek</td>
<td>158</td>
<td>12</td>
</tr>
<tr>
<td>ID2-42</td>
<td>Parachute Creek</td>
<td>159</td>
<td>12</td>
</tr>
<tr>
<td>ID2-43</td>
<td>Powell</td>
<td>162</td>
<td>12</td>
</tr>
<tr>
<td>ID2-44</td>
<td>Brushy Fork</td>
<td>168</td>
<td>12</td>
</tr>
<tr>
<td>ID2-45</td>
<td>Lolo Pass</td>
<td>172</td>
<td>12</td>
</tr>
<tr>
<td>ID2-46</td>
<td>White Pine Scenic Drive</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>ID2-47</td>
<td>Harvard Junction</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>ID2-48</td>
<td>Flat Creek</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>ID2-49</td>
<td>North Boville</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>ID2-50</td>
<td>Hog Meadow</td>
<td>28</td>
<td>3</td>
</tr>
<tr>
<td>ID2-51</td>
<td>Pine Creek</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>ID2-52</td>
<td>Little Bear</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>ID2-53</td>
<td>Julietta</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>ID2-54</td>
<td>Troy Highway</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>ID2-55</td>
<td>Spring Valley</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>ID2-56</td>
<td>Big Bear Creek</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>ID2-57</td>
<td>South Boville</td>
<td>37</td>
<td>8</td>
</tr>
<tr>
<td>ID2-58</td>
<td>South Troy</td>
<td>10</td>
<td>99</td>
</tr>
<tr>
<td>ID2-59</td>
<td>Schmidt Creek</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>ID2-60</td>
<td>Grasshopper Creek</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>ID2-61</td>
<td>Pierce Divide</td>
<td>26</td>
<td>11</td>
</tr>
<tr>
<td>ID2-62</td>
<td>Camas Prairie</td>
<td>31</td>
<td>11</td>
</tr>
<tr>
<td>ID2-63</td>
<td>7 Mile</td>
<td>15</td>
<td>162</td>
</tr>
<tr>
<td>ID2-64</td>
<td>Kooskia</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>ID2-65</td>
<td>Howard Creek</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>ID2-66</td>
<td>Lyon's Park</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>ID2-67</td>
<td>Sally Ann Creek</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>ID2-68</td>
<td>Harpster Grade</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>ID2-69</td>
<td>Newsome Creek</td>
<td>37</td>
<td>14</td>
</tr>
<tr>
<td>ID2-70</td>
<td>Red River</td>
<td>48</td>
<td>14</td>
</tr>
</tbody>
</table>

GIS Data Layers, GISAnalysis, and Project Deliverables

The primary GIS processing tasks required prior to conducting the expert workshops on the wildlife linkage areas were to develop the reference base layers and create the linkage zone model. Processing the base layers typically involved deriving a subset of the digital data from a larger regional or national data layer for vector based layers, labeling features for reference, and re-projecting as necessary for efficiency in display and analysis. In addition to the expert workshops, hard-copy and digital maps were prepared utilizing the GIS layers.

The data layers used in the expert workshops are described in detail in the GIS Data Layers section. The GIS Analysis methodology is described in the Project Methodology section and in Appendix D.

GIS Data Layers

State and federal highways
State and federal highways data, provided by ITD, and detailed streets from ESRI’s StreetMap were used for display during the workshops. Highway bridges were not available in digital GIS format, but were noted in comments collected during the workshops. A road density map layer was derived from the road layer as part of the linkage zone model and used in a “moving circle analysis” (Servheen, 2001).

Big game
The Rocky Mountain Elk Foundation (RMEF) provided data for winter, winter crucial, summer, and summer crucial occupied elk habitat from the Measure and Prioritize Habitat™ project. Geodata has worked with RMEF and assisted in developing the elk habitat layer. Mule Deer data was provided by Utah State University and additional big game wildlife data was provided by Idaho Conservation Data Center (IDCDC). Big game data was used for display during the workshops.

Amphibians and reptiles
The primary source of amphibian and reptile habitat occurrence was provided by IDCDC for display during the workshops. Species of concern include frogs, salamanders, turtles, snakes, lizards. These species generally have limited mobility and can suffer high mortality when attempting to cross highways (see D. M. Jochimsen, C. R. Peterson, K. M. Andrews, and J. W. Gibbons. 2004. A literature review of the effects of roads on amphibians and reptiles and the measures used to minimize those effects. Final draft report to the IDFG and USFS).

Fisheries
Fisheries data for threatened and endangered fish species was provided by IDFG and IDCDC for display during the workshops. Excellent research and GIS layers exist in portions of Idaho for fish species, including barrier data and other ancillary
layers. A potential fish barrier layer was created by intersecting perennial streams and state highways for display during the workshops. Fish barriers and fish passage issues were also identified in the comments collected during the workshops.

Public land ownership

Public land ownership data (at a scale of 1:100,000), from the Idaho State Office of the BLM, was used for display during the workshops. Like most western states, the GIS layer of public land ownership has not been updated regularly and may not be accurate in all locations. Nonetheless, it provided a generally accurate ownership map for workshop participants.

Protected lands

The protected lands data in the University of California Santa Barbara’s Managed Area database was used for display during the workshops. Protected lands that were not available in digital GIS format were not digitized, but were noted in the comments collected during the workshops.

Rivers and Streams

Perennial streams from the National Hydrography Dataset were used for display during the workshops.

Wetlands

ITD provided the available National Wetland Inventory (NWI) data as a general reference layer in the expert workshops.

Imagery

ITD provided 1-meter resolution orthophotos, based on the National Agricultural Imagery Program (NAIP). Although these are not land cover GIS layers, they provide detailed images of local vegetative patterns. Identification of hiding cover is plainly visible. The NAIP imagery was used throughout the workshops as the primary base map and reference layer.

Digital Elevation Model (DEM)

The thirty meter resolution DEMs, obtained from the USGS National Elevation Dataset (NED), was used to derive GIS layers used for display in the workshops, including a shaded relief map, or hill shade for display of terrain features.

Railroads

Railroad tracks are important because they almost always compound habitat connectivity and increase mortality. The presence of high volume railroad tracks along highways can reduce effectiveness of highway mitigation measures. IDFG provided all available digital versions of railroad tracks for display during the workshops.
Highway mileposts
ITD provided highway milepost locations for display during the workshops. Highway mileposts have been the preferred reference aid for workshop participants.

Wildlife-vehicle accidents
Comprehensive digital data for the location of wildlife-vehicle accidents was not available for ITD2, but areas of concern were identified in the comments collected at the workshops. Highway staff and wildlife biologists coded some wildlife linkage areas by category, representing the number of road-killed animals per year, using high (>20), medium (5-20), or low (< 5) for groupings of ungulates, large carnivores, and other species of interest.

Public land survey system
The Idaho 1:100,000 scale public land survey system (PLSS) from Inside Idaho was used as a reference layer for workshop participants. Townships and sections were auto-labeled to facilitate orientation.

Threatened and endangered species
IDCDC provided the location of threatened and endangered species, including wolves and grizzly bears, for display during the workshops. Additional species were identified in the comments collected during the workshops.

Additional base layers
ITD District boundaries, city limits, and county boundaries from ITD were used for display during the workshops.

Land Cover
The National Land Cover Data (NLCD) layer was available as a backdrop for general reference and orientation during the expert workshops. We prepared a grid of the NLCD for the project area for general reference and for use as the source for the cover/non-cover inputs for the linkage zone model.

Human Developed Sites
Large ungulate and carnivore wildlife species are influenced by the intensity of human activity around developed sites. Depending on the wildlife species involved, they may act negatively, positively or in a neutral fashion. Negative responses to avoid areas surrounding developed sites may result in habitat loss or fragmentation, and positive responses or attraction to developed sites due to the presence of foods can result in increased mortality and highway public safety concerns.

Human developed sites were used for the linkage zone model and as a resource layer for display in the workshops. For ITD2, Geodata digitized buildings
identified on the NAIP imagery within a four mille buffer of federal and state highways. The human developed site layer was composed of structure locations, public recreation sites, and city limits. Public recreation points (campgrounds, picnic areas, etc.) typically do not exist in digital form and were digitized from BLM public surface land status maps (typically at scales of approximately 1:100,000).

Project Deliverables

Project deliverables include this final technical report including maps of the wildlife linkage areas and documentation collected from biologists and other experts during the workshops. In addition to the report, the wildlife linkage area GIS layer was developed during the project. Formal metadata is included in Appendix D. The physical model used to develop the linkage zone grid layers was also a deliverable. The map layers include the linkage zone model for ITD2 and the five major subcomponents of the model, delivered in ArcInfo® grid file format.

Geodata provided support for two expert workshops to develop wildlife linkage areas for the project area and provide the content for the wildlife linkage assessment. The workshops followed a similar format and were each one day in duration. The workshops were attended by biologists and engineers from state, federal and local government agencies, and representatives of several non-governmental organizations. A list of workshop participants is provided in Appendix C.

Geodata also provided an on-line questionnaire using Survey Monkey for participants to make revisions and comments on existing wildlife linkage areas, or to provide information on new linkage areas.

Maps, data, and comments for each wildlife linkage area in Idaho, including District 2, are available at http://www.socialtext.net/idahohighwaywildlifelinkage

This site is hosted on Geodata’s wiki, an editable web site that allows anyone interested to examine, download, print out or comment on a wildlife linkage area. The wiki is virtually maintenance free and can remain as an interim web site resource for the project until ITD or IDF&G develop an alternative. Geodata will host the site as long as they have a license agreement with Socialtext.net. Also, ITD and IDFG can download the pages in HTML, PDF, or MS Word format to move to another site of their choosing.

The GIS data layers developed in this project are provided in the Idaho Transverse Mercator (IDTM) projection, a single-zone system that is widely accepted for use in the State of Idaho and is the state standard. The projection parameters for this standard are as follows:

Projection Name: Idaho Transverse Mercator NAD83 (IDTM83)

Units: meters
Datum: NAD83
Vertical Datum: NAVD88
Scale factor: .99960
Central Meridian: -114 00 00
Latitude of Origin: 42 00 00
False Easting: 2500000
False Northing: 1200000

Project Process

Project Methodology

GIS Analysis Linkage Zone Modeling
The linkage zone model developed for the ITD2 expert workshop was based on methodology originally developed by Meitz (1994) and Servheen (2001). The model was targeted at large carnivores and ungulates, and identified linkage areas along highway corridors at a scale appropriate to the size of study area identified for this effort. The model included vegetation hiding cover, road density, riparian areas and human developed sites, and complemented the habitat fragmentation analysis required for other wildlife, serving as a surrogate for many other species. The model also identified areas where cooperation was necessary and where opportunities were greatest for wildlife benefits in coordination between transportation departments, public land managers, wildlife biologists, NGOs and private land owners. In addition to the final model, the derivative layers were also useful individually as reference layers in the expert workshop.

The process for the final linkage zone model combined the four input data layers (roads, human developed sites, cover conditions, riparian areas) and subsequently divided the results into four categories. In the “minimal” combined impact category, a given cell in the model had to have beneficial or neutral impact on all four individual layers or no more than one layer with a low impact value. The criteria progressed in this manner up through the low, moderate and high impact values (see description below). Details on this linkage zone model methodology are available in a report prepared by Chris Servheen, National Grizzly Bear Coordinator with the US Fish and Wildlife Service (2001) and in a thesis by Per Sandstrom (1996).

Linkage Zone Model Tools

These tools are the modules of the Identification of Potential Linkages Zones model for large carnivores and ungulates. The tools were built in ESRI Modelbuilder, a component of Arcview 9 and provided as a deliverable for this project. The toolbox for the model and associated parameters can be optionally loaded along with the grid layers to re-run or tweak parameters of the model. Impacts of human activities and beneficial features of the landscape were considered. A rating system for each type of impact and vegetation condition was used to score each model component and then the values were combined and classified into impact level categories of high, moderate, low, or minimal. The impacts and vegetation conditions considered were distance from roads, road density, human developed sites, riparian areas and hiding cover. While distance from roads was not applied directly to the final score it was used to define secure core areas which was
then used to modify the rating of road density and hiding cover.

The following sections describe the primary components of the model. Refer to Appendix D for the detailed GIS methodology implementing the model processes and flowcharts from Modelbuilder illustrating the relationships. The formal FGDC metadata, associated with each GIS layer and grid includes additional details on the model process and data layer documentation.

Hiding Cover
Extracted the cover types from the National Land Cover Data that could be considered as hiding cover. A 30 meter edge buffer was created that expanded the hiding cover areas. Finally, the hiding cover values were modified by their location either in or out of secure core areas (SCA). All areas, hiding, edge, or open were classified as hiding within secure core areas. Edge areas outside of a SCA were given an impact rating one level higher than hiding cover and open areas were given a rating of 2 levels higher than hiding cover.

Human Influence Zone
Defines Human Influence Zones around human developed sites. A high impact zone layer was generated by buffering all developed site point and polygon features. The high impact zone layer is the primary input for this tool, which then creates two additional impact zones around the high impact zone. These additional rings are then assigned medium and low impact values moving outward from the high impact zone.

Riparian
Perennial streams were extracted from the National Hydrography Dataset (NHD) layers provided by ITD. The streams and rivers were auto-labeled for orientation and quick visual location by experts in the workshops. NHD streams were used in the linkage zone model to determine riparian areas.

Secure Core Area
This tool generates the secure core areas (SCA) based on distance from selected roads and high use trails. The euclidian distance to the nearest road segment is calculated for each grid cell and then reclassified as either "In SCA" (greater than 500 meters from a road or high use trail), or "Out of SCA" (within 500 meters of a road or high use trail).

Total Motorized Access Routes
Uses a "moving window" analysis routine to calculate the road density in the one square mile (circular) area around each grid cell. The road density is then classified into 4 categories - 0 miles/sq. mile, 0.01 - 1 miles/sq mile, 1.01 - 2 miles/sq mile, and > 2 miles/sq mile. Impact values are assigned to each category and then modified based on whether they are in or out of secure core areas (SCA). Impact values for areas out of SCA are increased by one level, and areas within an SCA retain the original value.
Combined Impacts

LZ Combined Impacts adds the impact values from the component models and classifies the resultant grid into impact categories of minimal (1), low (2), moderate (3), or high (4).

MINIMAL: In general, to be considered in the “minimal” combined impact category, the pixel had to have “neutral” or beneficial” impact values for all 4 individual layers, or only one condition have a “minimal” or “low” impact value.

- 4 beneficial or neutral
- 3 beneficial or neutral and 1 minimal or low

LOW: To be considered in the “low” combined impact category, 2 conditions could be in the “minimal” or “low” category, or 1 condition in the “minimal” or “low” category and/or 1 condition in the “moderate” category while the others had to be “beneficial” or “neutral”.

- 2 minimal or low and 2 beneficial or neutral
- 1 minimal or low and 1 moderate and 2 beneficial or neutral
- 1 moderate and 3 beneficial or neutral

MODERATE OR HIGH: To be considered in the “moderate” or “high” combined impact category, the individual impact values had to be different combinations of “low”, “moderate”, and “high impact values

Workshops

Two expert workshops were held in Lewistown for ITD District 2. The workshops followed a similar format and were each one day in duration. The workshops were attended by ITD biologists and engineers, and biologists from IDFG, the US Fish and Wildlife Service, Bureau of Land Management and the US Forest Service. Biologists from several non-governmental organizations also attended the workshops. A full list of participants in each workshop is provided in Appendix C.

The purpose of the workshops was to review data layers and collectively and individually identify wildlife linkage areas, review planned highway projects, and anticipate other site specific issues related to wildlife habitat, public safety and other wildlife linkage topics. Workshop attendees had access to interactive GIS services to review data layers and model results, paper wall maps and other documentation. The expert workshops included interactive mapping as a group, supplemented by completion of documentation and worksheets, and prioritizing wildlife linkage areas.

The general format for the workshops was as follows:

- General introductions of workshop participants and introduction to the process (including a PowerPoint presentation) and the data layers and maps available for the process (0.5 hrs).
- Presentation by IDFG representative on the statewide, web-based highway/wildlife mortality database (0.5 hrs).
- Presentation by Bill Ruediger concerning the Rapid Linkage Assessment process and other wildlife/highway issues (1.0 hrs).
• Group review and discussion of individual highway segments with mile-by-mile summary and identification of key areas of interest. Group summary discussion of key wildlife issues and opportunities. Documentation by workshop participants in identified area of interest polygons. Identification of additional research and information needs, additional contacts, and issue delineation (4 hrs).

• Separate exercises to prioritize wildlife linkage areas (1.5 hrs).

• Training and comparison workshop results with Statewide Transportation Improvement Program (STIP) plans, and discussion of linkage mitigation strategies (1 hr).

The group discussed each highway segment sequentially, reviewed pertinent maps and data layers, mapped wildlife linkage areas, and documented the linkage attributes. Geodata provided support for the group, displayed information on request, digitized wildlife linkage areas, and assisted in documentation and annotation. Geodata used the data collection form previously used to collect wildlife linkage area data in ITD Districts 3, 4, 5, and 6.

Additional wildlife linkage areas, data and comments were provided by project participants using Survey Monkey.

Post Workshop Processing

Following each workshop, Geodata standardized the wildlife linkage areas recorded in the expert workshops by placing a 500 meter buffer around each identified road segment. The database items recorded at the expert workshops were joined to each wildlife linkage area and are provided as part of the ArcView shapefile. Additional comments were provided in a document file.

Database items include:

• **ITD2_ID**: The linkage identifier number, including the district name (e.g., ID2-03).

• **AOI_NAME**: The name assigned to the linkage by workshop participants.

• **PRIORITY**: One of 3 categories (high, medium, low). These were subjective rankings assigned by workshop participants at the end of each workshop in Districts 1-2.

• **SPECIES**: The wildlife species mentioned by workshop participants or on online forms or interviews. Each species is separated by a backslash character.

• **MIG_POP**: Indication by workshop participants on whether the wildlife population was migratory, which has some bearing on the success of different wildlife crossing structures.
• **LOC_POP**: Indication by workshop participants on whether the wildlife population was local, which has some bearing on the success of different wildlife crossing structures.

• **SCALE**: The ecosystem scale of the linkage area. Those of ecosystem scale provide linkage primarily between large areas of federal lands important to wildlife. Those of local scale are important for local populations.

• **HWY_MORT**: A comment on highway wildlife vehicle accidents and highway related wildlife mortality.

• **SEASON**: A comment on the linkage area if it is primarily used by wildlife in one or more specific seasons of the year.

• **ATTRACT**: A comment on any attractants for wildlife in the area of the linkage or the immediate surroundings.

• **AGENCIES**: The agencies that are either responsible for or have primary interest in the area in or around a linkage area.

Following each workshop, Geodata prepared an index map and 8”x11” PDF maps for the wildlife linkage areas identified in the workshops. Each wildlife linkage area was assigned a unique identification number in the GIS polygon layer and the associated data and descriptive comments. The PDF maps were provided to IDFG and posted on Geodata’s Idaho Highway Wildlife Linkage wiki at http://www.socialtext.net/idahohighwaywildlifelinkage

Documentation and Metadata
Geodata prepared formal FGDC compliant metadata for the wildlife linkage area polygon layer and the linkage zone model.

References

Appendix A – Wildlife Linkage Area Index Map and Map Tiles

IDAHO TRANSPORTATION DISTRICT 2 – INDEX MAP
Highway/Wildlife Linkage Mapping
ITD2 Areas of Interest
Tile 3

CLEARWATER
Appendix B – Detailed Wildlife Linkage Area Maps with Detailed Comments
ITD2_ID: ID2-01

AOI_NAME: Marsh Hill

PRIORITY: Moderate

SPECIES: mule deer/ elk/ moose/ black bear/ small mammals

MIG_POP:

LOC_POP: Yes

SCALE:

HWY_MORT:

SEASON: Spring, Summer, Fall, Winter

ATTRACT:

AGENCIES:

ADDITIONAL COMMENTS:
Not a high kill area. Herd of elk by rest area.
ITD2_ID: ID2-02

AOI_NAME: Crook's Hill
ITD2_ID: ID2-02
AOI_NAME: Crook's Hill
PRIORITY: Low
SPECIES: mule deer/ elk/ moose/ small mammals
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ITD2_ID: ID2-03

ID_Hwy_Linkage

ITD_ID ID2-03

AOI_NAME Steak House Hill

[Map Image 1]

Legend:
- Land Ownership
 - BLM
 - Misc Federal
 - NGO
 - Private
 - State
 - Tribal
 - USFS
 - UNFWS

[Map Image 2]
ITD2_ID: ID2-03

AOI_NAME: Steak House Hill

PRIORITY: Moderate

SPECIES: mule deer/ elk/ moose/ small mammals

MIG_POP:

LOC_POP:

SCALE:

HWY_MORT:

SEASON:

ATTRACT:

AGENCIES:

ADDITIONAL COMMENTS:

High kill area. Potential highway safety issue.
ITD2_ID: ID2-04

AOI_NAME: Thorn Creek

PRIORITY: Low

SPECIES: mule deer/ elk/ moose/ short-eared owls/ small mammals

MIG_POP:

LOC_POP:

SCALE:

HWY_MORT:

SEASON:

ATTRACT: water/riparian

AGENCIES:

ADDITIONAL COMMENTS:

Moose population increasing in this area. Private ponds act as an attractant. Plans to make hwy wider and relocate.
ITD2_ID: ID2-05
AOI_NAME: Hill's Crossing
PRIORITY: Low
SPECIES: mule deer/ elk
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
Elk herd moving to Washington.
ITD2_ID: ID2-06
AOI_NAME: Hatwai Canyon
PRIORITY: Low
SPECIES: mule deer/ elk
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
Big game (elk and deer) x-ing area.
ITD2_ID: ID2-07

[Map Image 1]

[Map Image 2]
ITD2_ID: ID2-07
AOI_NAME: Hathway Creek
PRIORITY: Low
SPECIES: white-tail deer/ moose/ steelhead/ reptiles/ amphibians/ geese, waterfowl, owls, small birds, bald eagle wintering area/ small mammals
MIG_POP: No
LOC_POP: Yes
SCALE: Local
HWY_MORT:
SEASON:
ATTRACT: water/riparian
AGENCIES:
ADDITIONAL COMMENTS:
Major river corridor. Culvert.
ITD2_ID: ID2-08
AOI_NAME: Spalding
PRIORITY: Low
SPECIES: white-tail deer/ reptiles/ bald eagle wintering area, Heron rookery on Hog Island/ Fish passage issues
MIG_POP: No
LOC_POP: Yes
SCALE: Local
HWY_MORT:
SEASON:
ATTRACT: water/riparian
AGENCIES:
ADDITIONAL COMMENTS:
Tribe says bridge on Catholic Creek, which was a problem for fish passage, was fixed.
ITD2_ID: ID2-09
AOI_NAME: Spalding Park
PRIORITY: Low
SPECIES: white-tail deer/ bobcat/ songbirds, owls, bats/ small mammals
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
High mortality area for small mammals. Colville & state historical; mostly private.
ITD2_ID: ID2-10
AOI_NAME: Lapwai
PRIORITY: Low
SPECIES: fish passage issues
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
Bridge; not many ungulates along hwy; tribal assessment on Lapwai Cr; CDC Spaulding Catch Fly.
ITD2_ID: ID2-11
AOI_NAME: MP 299
PRIORITY: Low
SPECIES:
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:

Bridge; not many ungulates along hwy; tribal assessment on Lapwai Cr; CDC Spaulding Catch Fly.
ITD2_ID: ID2-12
ITD2_ID: ID2-12
AOI_NAME: Sweet Water Creek
PRIORITY: Moderate

SPECIES: mule deer/ coyotes (2 hit on roadway in winter of 07-08)/ herons and gallinaceous birds/ small mammals

MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:

ATTRACT: water/riparian

AGENCIES:

ADDITIONAL COMMENTS:

Bridge; not many ungulates along hwy; tribal assessment on Lapwai Cr; CDC Spaulding Catch Fly.
ITD2_ID: ID2-13
ITD2_ID: ID2-13
AOI_NAME: Jacques
PRIORITY: Low
SPECIES:
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:

Bridge; not many ungulates along hwy; tribal assessment on Lapwai Cr; CDC Spaulding Catch Fly.
ITD2_ID: ID2-14
ITD2_ID: ID2-14
AOI_NAME: Cul de Sac Canyon
PRIORITY: High

SPECIES: mule deer/ white-tail deer/ elk/ black bear/ mountain lion/ spawning and rearing area for steelhead

MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:

This linkage area was identified as a Pilot Project at the 4/2/08 workshop.
ITD2_ID: ID2-15

[Map Image]

Legend
Land Ownership
- BLM
- Misc Federal
- NRO
- Private
- State
- Tribal
- USFS
- Corp

[Map Details]

[Map Details]
ITD2_ID: ID2-15
AOI_NAME: Lawyer Canyon
PRIORITY: Low
SPECIES:
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:

No issues identified. Major riparian corridor. High bridge.
ITD2_ID: ID2-16
AOI_NAME: Salmon River
PRIORITY: High
SPECIES: mule deer/white-tail deer/ elk/ black bear/ fish passage issues
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT: water/riparian/ orchards attract black bears near John Day Creek
AGENCIES:
ADDITIONAL COMMENTS:

Heavy mule deer road kill area, but whitetails killed too. From 29 February to 16 April 2008, 3 whitetails and no mule deer were picked up at MP 217 by ITD road crews. Elk crossing at mp 212-216. Guzzlers could be used to keep animals from going across the roadway to access water. MP 215-220 very high mule deer road kill area. High concentration of black bears at John Day Creek. John Day creek location for bridge replacement. This linkage area was identified as a Pilot Project at the 4/2/08 workshop. Old underpass bridge. Big fisheries. Mitigation site. McFarland 4 o'clock. Skookumchuck 4 o'clock.
ITD2_ID: ID2-17

Legend

Land Ownership
- BLM
- Misc Federal
- NPO
- Private
- State
- Tribal
- USFS
- USFWS

59
ITD2_ID: ID2-17
AOI_NAME: Race Creek
PRIORITY: Low
SPECIES:
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
Bridge
ITD2_ID: ID2-18
ITD2_ID: ID2-18
AOI_NAME: Little Salmon
PRIORITY: High
SPECIES: mule deer/ white-tail deer/ elk/ fish passage issues/ salmon, bull trout, steelhead
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT: >20
SEASON: Spring, Summer, Fall, Winter
ATTRACT: water/riparian
AGENCIES:
ADDITIONAL COMMENTS:

Often referred to as “blood alley.” Very high level of mule deer mortality, especially at mp 183-191, 193-196. From 29 February to 16 April 2008, 13 animals (50:50 white-tailed deer: mule deer) were picked up between MP 182-189. In winter, animals bed down on right-of-way. On 4-08-08 a wolf was road-killed at MP 188 (Bruce Bovey, ITD, has pictures). Elk crossing area at mp 192-193 (Boggan-Wick’s Bridge). Mule deer are attracted to water provided by the Little Salmon River. This linkage area was identified as a Pilot Project at the 4/2/08 workshop. There is a potential highway project near Smokey Boulder. Bridge. Big box culvert, Rattlesnake Cr.
ITD2_ID: ID2-19

AOI_NAME: Hyatt Creek

PRIORITy: Low

SPECIES: elk/ black bear/ fish passage issues/ small mammals

MIG_POP:

LOC_POP:

SCALE:

HWY_MORT:

SEASON:

ATTRACT:

AGENCIES:

ADDITIONAL COMMENTS:

Bridge at Elk Creek has been replaced. New pipe recently installed. Fisheries; bridge; GIS map of special areas of concern; Trail Cr and Hazard Cr fisheries.
ITD2_ID: ID2-20
ITD2_ID: ID2-20

AOI_NAME: Cottonwood Creek

PRIORITY: Low

SPECIES: white-tail deer/ elk/ steelhead (in Cottonwood Creek)/ bald eagle wintering area, bald eagle nest on Fir Island, which is within this linkage area/ beaver, porcupines

MIG_POP: No

LOC_POP: Yes

SCALE: Local

HWY_MORT:

SEASON: Spring, Summer, Fall, Winter

ATTRACT: water/riparian

AGENCIES:

ADDITIONAL COMMENTS:
It's questionable if there is still a fish passage issue, but there is a fish passage issue on the county road. Culvert/bridge; mp 27 small culvert
ITD2_ID: ID2-21

Legend
Land Ownership
- BLM
- Misc Federal
- NPS
- Private
- State
- Tribal
- USFS
- USFWS

0 0.5 Miles
ITD2_ID: ID2-21
AOI_NAME: Jack's Creek
PRIORITY: Low
SPECIES: steelhead/ reptiles/ amphibians/ swallows hit on the roadway/ small mammals
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT: water/riparian
AGENCIES:
ADDITIONAL COMMENTS:

A culvert is present that may be a potential fish barrier at low water. Culvert/bridge; mp 27 small culvert.
ITD2_ID: ID2-22
AOI_NAME: Big Canyon Creek
PRIORITY: Low
SPECIES: white-tail deer/ reptiles/ amphibians
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON: Spring, Summer, Fall, Winter
ATTRACT: Golf Course is an attractant to wildlife
AGENCIES:
ADDITIONAL COMMENTS:
 Bridge
ITD2_ID: ID2-23
ITD2_ID: ID2-23
AOI_NAME: Orofino
PRIORITY: Low
SPECIES: white-tail deer/ raccoons/ skunks
MIG_POP:
LOC_POP:
SCALE: Local
HWY_MORT: White-tail deer, birds, small mammals
SEASON: Deer year-round
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
Permanent Human Presence: Residential homes.
Effective functioning of linkage area: Site functions with moderate levels of wildlife mortalities.
Opportunities to improve the effectiveness of the linkage area: Probably just signage.
This is a suburban area.
ITD2_ID: ID2-24
ITD2_ID: ID2-24
AOI_NAME: Five Mile Creek
PRIORITY: Low
SPECIES: small mammals
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:

Potential fish passage issue. Large culverts; metal rail mp 56-64, riverside mp 44-52.
ITD2_ID: ID2-25

AOI_NAME: Six Mile Creek

PRIORITY: Low

SPECIES: white-tail deer/ black bear/ bobcat/ steelhead/ reptiles/ amphibians/ bald eagle nest

MIG_POP:

LOC_POP:

SCALE: Local

HWY_MORT:

SEASON:

ATTRACT:

AGENCIES:

ADDITIONAL COMMENTS:
Potential fish passage issue. Large culverts.
ITD2_ID: ID2-26
ITD2_ID: ID2-26
AOI_NAME: Kamiah
PRIORITY: Moderate
SPECIES: white-tail deer/ raccoons/ osprey nest
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT: >20
SEASON:
ATTRACT:
AGENCIES
ADDITIONAL COMMENTS:
There are jersey barrier issues. White-tail deer are hit primarily at mp 65. There is no eagle nest within this linkage area. Kamiah, barrier from 64-66; mp 64 osprey nest.
ITD2_ID: ID2-27

AOI_NAME: Heart of the Monster

PRIORITY: High

SPECIES: white-tail deer/ raccoons

MIG_POP:

LOC_POP:

SCALE:

HWY_MORT: >20

SEASON:

ATTRACT:

AGENCIES:

ADDITIONAL COMMENTS:

This is a high deer kill area, and is a high priority because of this.
ITD2_ID: ID2-28
AOI_NAME: Maggie Creek
PRIORITY: Low
SPECIES: white-tail deer
MIG_POP:
LOC_POP:
SCALE: Local
HWY_MORT: >20
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
There is a large culvert present at this linkage area, not a bridge.
ITD2_ID: ID2-29
ITD2_ID: ID2-29
AOI_NAME: 07's
PRIORITY: High
SPECIES: white-tail deer/ elk/ black bear/ turkeys
MIG_POP:
LOC_POP:
SCALE: Local
HWY_MORT: >20
SEASON: Winter - deer crossing area
ATTRACT: agriculture fields/ water/riparian
AGENCIES:
ADDITIONAL COMMENTS:
Important Seasons: Deer are year-round residents.
Permanent Human Presence: Residential homes
Most common species killed by vehicles: White-tailed deer
Effective functioning of linkage area: Site functions with moderate levels of wildlife mortalities.
Black bears have been hit at mp 89 and 90. High strike area for deer is mp 83.5 to 86. Elk are present, but have not been hit on the roadway. Deer movements are from the agricultural fields to the river.
ITD2_ID: ID2-30
ITD2_ID: ID2-30

AOI_NAME: Lowell

PRIORITY: Low

SPECIES: white-tail deer/ elk/ moose/ black bear/ mountain lion/ bobcat/ wolf/ otter/
salmon and steelhead/ reptiles/ amphibians/ turkeys/ beaver

MIG_POP:

LOC_POP:

SCALE:

HWY_MORT:

SEASON: Winter - elk winter along the highway, mp 95-97 and 99

ATTRACT:

AGENCIES:

ADDITIONAL COMMENTS:

ITD2_ID: ID2-31
ITD2_ID: ID2-31

AOI_NAME: Deadman Creek

PRIORITY: Low

SPECIES: potential fish passage issues

MIG_POP:

LOC_POP:

SCALE:

HWY_MORT:

SEASON:

ATTRACT: Grain spill from truck crashes attract wildlife

AGENCIES:

ADDITIONAL COMMENTS:

ITD replacing three passages. High accident area; oil spill; nasty S curve; bridge at Deadman Cr.
Wolf pack at mp 121-125. This linkage area encompasses the best Harlequin Duck population in the state of Idaho. Harlequin ducks present from here all the way past Powell. There is light wildlife-highway mortality for white-tail deer. Bridge; Fish Cr., south private development; box culvert, some work scheduled.
ITD2_ID: ID2-33

AOI_NAME: Big Pond
ITD2_ID: ID2-33
AOI_NAME: Big Pond
PRIORITY: Low
SPECIES: mule deer/ elk/ salamanders and other amphibians
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
Large culvert going into the pond within the linkage area. Old ox bow; sand shed.
ITD2_ID: ID2-34

AOI_NAME: Bald Mountain

Legend

<table>
<thead>
<tr>
<th>Land Ownership</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLM</td>
</tr>
<tr>
<td>Mod Federal</td>
</tr>
<tr>
<td>NP</td>
</tr>
<tr>
<td>Private</td>
</tr>
<tr>
<td>State</td>
</tr>
<tr>
<td>Tribal</td>
</tr>
<tr>
<td>US FS</td>
</tr>
<tr>
<td>Up FWA</td>
</tr>
</tbody>
</table>

0 0.5 1 Miles
ITD2_ID: ID2-34
AOI_NAME: Bald Mountain
PRIORITY: Low
SPECIES: mule deer/ fish passage issues/ small mammals
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT: Salt shed acts as an attractant to wildlife.
AGENCIES:
ADDITIONAL COMMENTS:
Bridge that is present isn't large enough to pass animals.
ITD2_ID: ID2-35

ITD_ID ID2-35
AOI_NAME Lost Creek

Legend:
- Land Ownership:
 - BLM
 - Mil Federal
 - NP
 - Private
 - State
 - Tribal
 - USFS
 - US FWS

0 0.5 Miles
ITD2_ID: ID2-35
AOI_NAME: Lost Creek
PRIORITY: Low
SPECIES: elk/ fish passage issues/ amphibians/ bald eagles/ beavers and other aquatic mammals
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:

High area of use by elk, but not necessarily high road kills. Old river meander, culvert connects to river.
ITD2_ID: ID2-36

Legend:
- Land Ownership
- BLM
- Mio Federal
- NP
- Private
- State
- Tribal
- US FS
- US FWS

Scale: 0.5 Miles
ITD2_ID: ID2-36
AOI_NAME: Indian Grave
PRIORITY: Low
SPECIES: elk/ moose/ mountain lion/ bobcat/ wolf/ fisher
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT: water/riparian
AGENCIES:
ADDITIONAL COMMENTS:

Moose attracted to the pond at mp 139. High area of use by elk, but not necessarily high road kills.
A fisher was killed by bobcat trappers at the mouth of the creek. Lots of elk; trees back passing lane
ITD2_ID: ID2-38

Legend
Land Ownership
- BLM
- Misc Federal
- NPQ
- Private
- State
- Tribal
- USFS
- USFWS

30 0.5 miles
ITD2_ID: ID2-38

AOI_NAME: Colgate Licks

PRIORITY: Low

SPECIES: mule deer/ elk/ black bear/ wolf/ fisher

MIG_POP:

LOC_POP:

SCALE:

HWY_MORT:

SEASON:

ATTRACT: Colgate Licks acts as an attractant to wildlife.

AGENCIES:
ITD2_ID: ID2-39

Legend

<table>
<thead>
<tr>
<th>Land Ownership</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLM</td>
<td>Yellow</td>
</tr>
<tr>
<td>Misc Federal</td>
<td>Brown</td>
</tr>
<tr>
<td>NP 0</td>
<td>Purple</td>
</tr>
<tr>
<td>Private</td>
<td>Blue</td>
</tr>
<tr>
<td>State</td>
<td>Ye</td>
</tr>
</tbody>
</table>
ITD2_ID: ID2-39
AOI_NAME: Doe Creek
PRIORITY: Low
SPECIES: fish passage issues/ reptiles/ amphibians
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
Bridge.
ITD2_ID: ID2-40

AOI_NAME: Badger Creek
ITD2_ID: ID2-40
AOI_NAME: Badger Creek
PRIORITY: Low
SPECIES: small mammals
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
Culvert project has been completed. They have been increased.
ITD2_ID: ID2-41
AOI_NAME: Wendover Creek
PRIORITY: Moderate
SPECIES: moose
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT: water/riparian
AGENCIES:
ADDITIONAL COMMENTS:

Moose are attracted to the ponds present in the linkage area. Culvert project has been completed.
ITD2_ID: ID2-42

A01_NAME: Parachute Creek
ITD2_ID: ID2-42

AOI_NAME: Parachute Creek

PRIORITY: Low

SPECIES: fish passage issues/ small mammals

MIG_POP:

LOC_POP:

SCALE:

HWY_MORT:

SEASON:

ATTRACT:

AGENCIES:

ADDITIONAL COMMENTS:

Bridge.
ITD2_ID: ID2-43

Legend
Land Ownership
- BLM
- Mls Federal
- NPS
- Private
- State
- Tribal
- USFS
- USFWS
ITD2_ID: ID2-43
AOI_NAME: Powell
PRIORITY: Low

SPECIES: mule deer/ elk/ moose/ black bear/ mountain lion/ bobcat/ wolf/ marten/ fisher/ beaver

MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:

ATTRACT: Lake on the south side of the highway. Salt attractant present.
AGENCIES:
ADDITIONAL COMMENTS:

Plugged culvert. A lot of moose present due to the lake. Not sure if the lake is caused by the plugged culvert? Sand shed with salt; wetland; Elk summit; Lolo Pass Project.
ITD2_ID: ID2-44

AOI_NAME Brushy Fork
ITD2_ID: ID2-44

AOI_NAME: Brushy Fork

PRIORITY: Low

SPECIES: mule deer/ elk/ black bear/ wolf/ lynx/ fisher/ Harlequin ducks

MIG_POP: yes, mule deer and elk

LOC_POP:

SCALE:

HWY_MORT:

SEASON:

ATTRACT: Road salts act as an attractant.

AGENCIES:

ADDITIONAL COMMENTS:

CDC Hwy 12 Harlequin ducks, Crooked Fork. Lot of moose activity; but river below.
ITD2_ID: ID2-45

AOI_NAME: Lolo Pass
ITD2_ID: ID2-45
AOI_NAME: Lolo Pass
PRIORITY: Moderate
SPECIES: mule deer/ elk/ moose/ black bear/ mountain lion/ wolf/ lynx/ fisher
MIG_POP: yes, mule deer and elk
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT: Road salts act as an attractant.
AGENCIES:
ADDITIONAL COMMENTS:
No fish passage issue.
ITD2_ID: ID2-46
ITD2_ID: ID2-46

AOI_NAME: White Pine Scenic Drive

PRIORITY: Low

SPECIES: mule deer/ white-tail deer/ elk/ moose/ black bear/ mountain lion/ wolf/
Water Howelli location at mp 12 and 13 (oxbow habitat)/ small mammals

MIG_POP:

LOC_POP:

SCALE: Ecosystem

HWY_MORT:

SEASON: Spring, Summer, Fall, Winter

ATTRACT:

AGENCIES:

ADDITIONAL COMMENTS:

Moose are a particular problem. Underpasses in linkage zone. Palouse watershed divide is to
the west. Travel corridors east and west crossing SH6. Elk, hay feeds in spring; 18-19 moose hit,
larger kill site here; several overpasses, box culverts. Wolf was observed approximately 2 years
ITD2_ID: ID2-47
AOI_NAME: Harvard Junction
PRIORITY: Low
SPECIES: Water Howelli location
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES
ADDITIONAL COMMENTS:
Large bridge.
ITD2_ID: ID2-48
ITD2_ID: ID2-48
AOI_NAME: Flat Creek
PRIORITY: Low
SPECIES: mule deer/ white-tail deer/ elk/ moose/ wolf
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:

High deer and elk movement across this area. Mule deer collisions primarily occur at mp 9-10. U of I, forested; mp 9-10 abandoned RR bridge.
ITD2_ID: ID2-49

AOI_NAME: North Boville

PRIORITY: Low

SPECIES: white-tail deer/ elk/ moose/ black bear/ wolf/ misc. aquatic species

MIG_POP:

LOC_POP:

SCALE:

HWY_MORT:

SEASON:

ATTRACT:

AGENCIES:

ADDITIONAL COMMENTS:

Elk primarily found in the winter. Wolves are crossing the Palouse divide in this linkage area.
ITD2_ID: ID2-50

Legend:

Land Ownership
- BLM
- Misc Federal
- NP
- Private
- State
- Tribal
- USFS
- UdNFW

ID2-45
ID2-50

Deary
Pouitch River
ITD2_ID: ID2-50
AOI_NAME: Hog Meadow
PRIORITY: Low
SPECIES: white-tail deer/ elk/ moose/ wolf/ turkeys
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON: Spring, Fall, Winter
ATTRACT: water/riparian
AGENCIES:
ADDITIONAL COMMENTS:
Elk calving in Hog Meadow, which is close to the highway. MP 34 wolf crossings. White-tailed deer and turkeys common in this area.
ITD2_ID: ID2-51

Legend

<table>
<thead>
<tr>
<th>Land Ownership</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLM</td>
<td>Blue</td>
</tr>
<tr>
<td>Mio Federal</td>
<td>Blue</td>
</tr>
<tr>
<td>NPS</td>
<td>Blue</td>
</tr>
<tr>
<td>Private</td>
<td>Blue</td>
</tr>
<tr>
<td>State</td>
<td>Blue</td>
</tr>
<tr>
<td>Tribal</td>
<td>Blue</td>
</tr>
<tr>
<td>US FS</td>
<td>Blue</td>
</tr>
<tr>
<td>US FWS</td>
<td>Blue</td>
</tr>
</tbody>
</table>

Pine Creek
There are occasional elk and a few moose within this linkage area. White-tail deer are the primary ungulate present. MP 27 state maintenance shed.
ITD2_ID: ID2-52
ITD2_ID: ID2-52
AOI_NAME: Little Bear
PRIORITY: Low
SPECIES: steelhead
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:

No known fish passage problems within this linkage. Bridge; mp 15-25 porter rail.
ITD2_ID: ID2-53
ITD2_ID: ID2-53

AOI_NAME: Julietta

PRIORITY: Low

SPECIES: white-tail deer/ elk

MIG_POP:

LOC_POP:

SCALE:

HWY_MORT:

SEASON: Winter - Elk present in higher numbers in the winter.

ATTRACT: water/riparian

AGENCIES:

ADDITIONAL COMMENTS:

Elk also found in the side canyons in this linkage area. MP 8 bridge.
ITD2_ID: ID2-54

Legend
- Land Ownership
 - BLM
 - Misc Federal
 - NGO
 - Private
 - State
 - Tribal
 - USFS
 - US FWS

AOI_NAME Troy Highway

East Fork Bull Run Creek

Troy

0 0.5 1 Miles
Occasional elk. MP 10 bear kill. Two other bear have been sighted in this linkage area.
ITD2_ID: ID2-55
ITD2_ID: ID2-55
AOI_NAME: Spring Valley
PRIORITY: Low
SPECIES: white-tail deer/ elk/ moose/ black bear
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ITD2_ID: ID2-56

AOI_NAME: Big Bear Creek
ITD2_ID: ID2-56
AOI_NAME: Big Bear Creek
PRIORITY: Low
SPECIES: white-tail deer/ elk/ moose/ black bear
MIG_POP:
LOC_POP:
SCALE: regional
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
North to south movements. Regional linkage area.
ITD2_ID: ID2-57

[Map Image]

Legend:
- Land Ownership
 - BLM
 - Misc Federal
 - NP
 - Private
 - State
 - Tribal
 - LSFS
 - Ldnwd

0 0.5 1 Miles

ID2-50

ID2-57

Ruby Creek

Hidden Creek

Bovill

Sawtooth Mountain
ITD2_ID: ID2-57
AOI_NAME: South Boville
PRIORITY: Moderate
SPECIES: white-tail deer/ elk/ moose/ black bear/ wolf/ marten/ fisher/ amphibians
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT: water/riparian
AGENCIES:
ADDITIONAL COMMENTS:

ITD2_ID: ID2-58

Legend

- Land Ownership
 - BLM
 - Misc Federal
 - NP
 - Private
 - State
 - Tribal
 - USFS
 - USFWS

0 0.5 1 Miles
ITD2_ID: ID2-58
AOI_NAME: South Troy
PRIORITY: Low
SPECIES: white-tail deer/ elk
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ITD2_ID: ID2-59

AOI_NAME: Schmidt Creek
ITD2_ID: ID2-59
AOI_NAME: Schmidt Creek
PRIORITY: Low
SPECIES: white-tail deer
MIG_POP:
LOC_POP:
SCALE: Local
HWY_MORT: White-tail deer, birds, small mammals
SEASON: Deer year-round residents
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
Permanent Human Presence: Residential homes.
Effective functioning of linkage area: Site functions with moderate levels of wildlife mortalities.
Opportunities to improve the effectiveness of the linkage area: Signage
ITD2_ID: ID2-60
AOI_NAME: Grasshopper Creek
PRIORITY: Low
SPECIES: white-tail deer
MIG_POP:
LOC_POP:
SCALE: Local
HWY_MORT: White-tail deer
SEASON: Deer year-round residents
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
Permanent Human Presence: Residential homes
Effective functioning of linkage area: Site functions with moderate levels of wildlife mortalities.
Opportunities to improve the effectiveness of the linkage area: Signage
ITD2_ID: ID2-61
ITD2_ID: ID2-61
AOI_NAME: Pierce Divide
PRIORITY: Low
SPECIES: white-tail deer
MIG_POP:
LOC_POP:
SCALE: Local
HWY_MORT: White-tail deer
SEASON: Deer year-round residents
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
Permanent Human Presence: Residential homes

Effective functioning of linkage area: Site functions with moderate levels of wildlife mortalities.

Opportunities to improve the effectiveness of the linkage area: Signage
ITD2_ID: ID2-62
AOI_NAME: Camas Prairie
PRIORITY: Low
SPECIES: cougar
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ITD2_ID: ID2-63

AOI_NAME: 7 Mile
ITD2_ID: ID2-63
AOI_NAME: 7 Mile
PRIORITY: Low
SPECIES: white-tail deer/ elk/ moose/ black bear
MIG_POP:
LOC_POP:
SCALE: Local
HWY_MORT: White-tail deer
SEASON: Deer year-round residents
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
Permanent Human Presence: Residential homes
Effective functioning of linkage area: Site functions with moderate levels of wildlife mortalities.
Opportunities to improve the effectiveness of the linkage area: Signage
Not a high population of elk.
ITD2_ID: ID2-64
AOI_NAME: Kooskia
PRIORITY: Low
SPECIES: white-tail deer/ steelhead/ small mammals
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
White-tail deer are hit at mp 125.
ITD2_ID: ID2-65

AOI_NAME: Howard Creek

Legend:
- BLM
- Misc Federal
- NP
- Private
- State
- Tribal
- USFS
- USFWO

0 0.5 1 Miles
ITD2_ID: ID2-65
AOI_NAME: Howard Creek
PRIORITY: Low
SPECIES: white-tail deer
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:

ADDITIONAL COMMENTS:
There are no elk within this linkage area. Highest concentration of deer.
ITD2_ID: ID2-66

ITD_ID ID2-66
AOI_NAME Lyon's Park
ITD2_ID: ID2-66
AOI_NAME: Lyon's Park
PRIORITY: Low
SPECIES: white-tail deer/ steelhead/ potential fish passage issues
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ITD2_ID: ID2-67

AOI_NAME: Sally Ann Creek
ITD2_ID: ID2-67
AOI_NAME: Sally Ann Creek
PRIORITY: Moderate
SPECIES: white-tail deer/ elk/ black bear/ bobcat/ steelhead/ potential fish blockage/ coyotes
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
High white-tail deer road kill area.
ITD2_ID: ID2-68

AOI_NAME: Harpster Grade

PRIORITY: Moderate

SPECIES: white-tail deer/ elk/ moose/ black bear/ small mammals

MIG_POP:

LOC_POP:

SCALE: Local

HWY_MORT: white-tail deer

SEASON: Deer year-round residents

ATTRACT:

AGENCIES:

ADDITIONAL COMMENTS:

Permanent Human Presence: Residential homes

Effective functioning of linkage area: Site functions with moderate levels of wildlife mortalities.

Opportunities to improve the effectiveness of the linkage area: Signage

White-tail deer are the primary issue with collisions in this area.
ITD2_ID: ID2-69
AOI_NAME: Newsome Creek
PRIORITY: Low
SPECIES: white-tail deer/ elk/ moose/ black bear/ bobcat/ wolf
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
A lot of wolf activity lately. North and south movements.
ITD2_ID: ID2-70

Legend
Land Ownership
- BLM
- Misc Federal
- NPS
- Private
- State
- Tribal
- USFS
- US FWS
ITD2_ID: ID2-70
AOL_NAME: Red River
PRIORITY: Low
SPECIES: moose/ steelhead
MIG_POP:
LOC_POP:
SCALE:
HWY_MORT:
SEASON:
ATTRACT:
AGENCIES:
ADDITIONAL COMMENTS:
Replacing culvert in next few years.
Appendix C – Workshop Participants
District 2 Lewiston: April 2, 2008

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ken Puderbaugh</td>
<td>Idaho Transportation Department</td>
</tr>
<tr>
<td>Jim Pratt</td>
<td>Idaho Transportation Department</td>
</tr>
<tr>
<td>Leona Svancara</td>
<td>Idaho Fish and Game- Conservation Data Center</td>
</tr>
<tr>
<td>Marcie Carter</td>
<td>Nez Perce Tribe</td>
</tr>
<tr>
<td>Shawn Smith</td>
<td>Idaho Transportation Department</td>
</tr>
<tr>
<td>Ray Hennekey</td>
<td>Idaho Fish and Game</td>
</tr>
<tr>
<td>Joel Sauder</td>
<td>Idaho Fish and Game</td>
</tr>
<tr>
<td>Vicki Taylor</td>
<td>University of Idaho</td>
</tr>
<tr>
<td>Kim Just</td>
<td>Idaho Transportation Department</td>
</tr>
<tr>
<td>Bill Ruediger</td>
<td>Wildlife Consulting Resources</td>
</tr>
<tr>
<td>Greg Burak</td>
<td>Idaho Fish and Game</td>
</tr>
<tr>
<td>Ken Wall</td>
<td>Idaho Transportation Department District 2</td>
</tr>
<tr>
<td>Zach Funkhouser</td>
<td>Idaho Transportation Department</td>
</tr>
</tbody>
</table>

District 2 Lewiston: December 14, 2005

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tim Cramer</td>
<td>Idaho Transportation Department</td>
</tr>
<tr>
<td>Ken Ohls</td>
<td>Idaho Transportation Department</td>
</tr>
<tr>
<td>Jim Smith</td>
<td>Idaho Transportation Department District 2</td>
</tr>
<tr>
<td>Blake Thompson</td>
<td>Idaho Transportation Department District 2</td>
</tr>
<tr>
<td>Mark Schuster</td>
<td>Idaho Transportation Department District 2</td>
</tr>
<tr>
<td>Zach Funkhouser</td>
<td>Idaho Transportation Department District 2</td>
</tr>
<tr>
<td>Chris Tretter</td>
<td>Idaho Department of Lands CdA Staff</td>
</tr>
<tr>
<td>Shawn Smith</td>
<td>Idaho Transportation Department District 2 Env</td>
</tr>
<tr>
<td>Bud Converse</td>
<td>Idaho Transportation Department District 2</td>
</tr>
<tr>
<td>Ray Hennekey</td>
<td>Idaho Fish and Game</td>
</tr>
<tr>
<td>Wayne Melquist</td>
<td>University of Idaho</td>
</tr>
<tr>
<td>Joel Sander</td>
<td>Idaho Fish and Game</td>
</tr>
<tr>
<td>Paul Moroz</td>
<td>US Forest Service Clearwater National Forest</td>
</tr>
</tbody>
</table>
Appendix D – Detailed GIS Methodology (Metadata and Tools)
WILDLIFE LINKAGE AREA POLYGONS METADATA

Identification Information:
Citation:
 Citation Information:
 Originator: Idaho Transportation Department
 Publication_Date: 20080501
 Title: itd2_hwylinks
 Geospatial Data Presentation Form: vector digital data
 Online Linkage: \BEARTOOTH\C$\data\ITD2\WildLifeLinkage\itd2_hwylinks.shp

Description:
 Abstract: Idaho Transportation Department Fish and Wildlife Linkage Project
 Purpose: Linkage zones in Idaho Transportation Department District 2 with
documentation collected from biologists and other experts during workshops and review
comments.

Time_Period_of_Content:
 Time_Period_Information:
 Single_Date/Time:
 Calendar_Date: 20080501
 Currentness_Reference: publication date

Status:
 Progress: Complete
 Maintenance_and_Update_Frequency: Unknown

Spatial_Domain:
 Bounding Coordinates:
 West_BoundingCoordinate: -117.078281
 East_BoundingCoordinate: -114.558043
 North_BoundingCoordinate: 47.103004
 South_BoundingCoordinate: 45.160374

Keywords:
 Theme:
 Theme_Keyword_Thesaurus: Idaho State Highways
 Theme_Keyword: Highways
 Theme_Keyword: State Highways
 Theme_Keyword: Wildlife
 Place:
 Place_Keyword_Thesaurus: Idaho
 Place_Keyword: Idaho

Access_Constraints: Contact Shawn Smith, Idaho Transportation Department.
Use_Constraints: Contact Shawn Smith, Idaho Transportation Department.
Point_of_Contact:
 Contact_Information:
 Contact_Organization_Primary:
 Contact_Organization: Idaho Transportation Department - District 2
 Contact_Person: Shawn Smith
 Contact_Address:
Address_Type: physical address
Address: 2600 Frontage Rd
City: Lewiston
State_or_Province: Idaho
Postal_Code: 83501
Country: USA
Contact_Address:
Address_Type: mailing address
Address: PO Box 837
City: Lewiston
State_or_Province: Idaho
Postal_Code: 83501
Country: USA
Contact_Voice_Telephone: 208-799-5090
Native_Data_Set_Environment: Microsoft Windows XP Version 5.1 (Build 2600) Service Pack 2; ESRI ArcCatalog 9.2.2.1350
Data_Quality_Information:
Completeness_Report: Complete as of 20080501
Lineage:
Process_Step:
Process_Description:
1. Intersect draft linkage polygons from expert workshops with state highway features.
2. Buffer road segments.
 Distance: 500 meter
 End type: FLAT
3. Edit linkage zone buffers.
 Curvy road segments sometimes cause gaps or spikes in the buffer polygons. Gaps were filled and spikes were clipped.
4. Add ID field: NEW_ID
5. Join spatial features to data table.
Process_Date: 20080501
Spatial_Data_Organization_Information:
Direct_Spatial_Reference_Method: Vector
Point_and_Vector_Object_Information:
SDTS_Terms_Description:
SDTS_Point_and_Vector_Object_Type: G-polygon
Point_and_Vector_Object_Count: 70
Spatial_Reference_Information:
Horizontal_Coordinate_System_Definition:
Planar:
Map_Projection:
Map_Projection_Name: Transverse Mercator
Transverse_Mercator:
Scale_Factor_at_Central_Meridian: 0.999600
Longitude_of_Central_Meridian: -114.000000
Latitude_of_Projection_Origin: 42.000000
False_Easting: 2500000.000000
False_Northing: 1200000.000000
Planar_Coordinate_Information:
 Planar_Coordinate_Encoding_Method: coordinate pair
 Coordinate_Representation:
 Abscissa_Resolution: 0.000000
 Ordinate_Resolution: 0.000000
 Planar_Distance_Units: meters
Geodetic_Model:
 Horizontal_Datum_Name: North American Datum of 1983
 Ellipsoid_Name: Geodetic Reference System 80
 Semi-major_Axis: 6378137.000000
 Denominator_of_Flattening_Ratio: 298.257222
Entity_and_Attribute_Information:
 Detailed_Description:
 Entity_Type:
 Entity_Type_Label: itd2_hwylinks
 Attribute:
 Attribute_Label: FID
 Attribute_Definition: Internal feature number.
 Attribute_Definition_Source: ESRI
 Attribute_Domain_Values:
 Unrepresentable_Domain: Sequential unique whole numbers that are automatically generated.
 Attribute:
 Attribute_Label: Shape
 Attribute_Definition: Feature geometry.
 Attribute_Definition_Source: ESRI
 Attribute_Domain_Values:
 Unrepresentable_Domain: Coordinates defining the features.
 Attribute:
 Attribute_Label: NEW_ID
 Attribute_Definition: The linkage identifier number, including the district number.
 Attribute:
 Attribute_Label: AOI_NAME
 Attribute_Definition: The name assigned to the linkage by workshop participants.
 Attribute:
 Attribute_LABEL: PRIORITY
 Attribute_Definition: High, medium, or low. Subjective rankings assigned by workshop participants.
 Attribute:
 Attribute_LABEL: SPECIES
 Attribute_Definition: The wildlife species mentioned by workshop participants or on online forms or interviews.
Attribute Label: MIG_POP
Attribute Definition: Indication by workshop participants on whether the wildlife population was migratory, which has some bearing on the success of different wildlife crossing structures.

Attribute Label: LOC_POP
Attribute Definition: Indication by workshop participants on whether the wildlife population was local, which has some bearing on the success of different wildlife crossing structures.

Attribute Label: SCALE
Attribute Definition: The scale of the linkage area. Those of ecosystem scale provide linkage primarily between large areas of federal lands important to wildlife. Those of local scale are important for local populations.

Attribute Label: HWY_MORT
Attribute Definition: A comment on highway wildlife vehicle accidents and highway related wildlife mortality.

Attribute Label: SEASON
Attribute Definition: A comment on the linkage area if it is primarily used by wildlife in one or more specific seasons of the year.

Attribute Label: ATTRACT
Attribute Definition: A comment on any attractants for wildlife in the area of the linkage or the immediate surroundings.

Attribute Label: AGENCIES
Attribute Definition: The agencies that are either responsible for or have primary interest in the area in or around a linkage area.

Distribution Information:
Resource Description: Downloadable Data
Standard Order Process:
Digital Form:
Digital Transfer Information:
Transfer Size: 0.347

Metadata Reference Information:
Metadata Date: 20080513
Metadata Contact:
Contact Information:
Contact Organization Primary:
Contact Organization: Geodata Services, Inc.
Contact Person:
Contact Address:
Address Type: mailing and physical address
Address: 1121 E. Broadway St. #133
City: Missoula
State_or_Province: Montana
Postal_Code: 59802
Country: USA
Contact_Voice_Telephone: 406-532-3239.
Metadata_Standard_Name: FGDC Content Standards for Digital Geospatial Metadata
Metadata_Time_Convention: local time
Metadata_Extensions:
 Online_Linkage: http://www.esri.com/metadata/esriprof80.html
Profile_Name: ESRI Metadata Profile
ITD Linkage Zone Model Tools

These tools are the modules of the Identification of Potential Linkages Zones model for large carnivores and ungulates. The tools were built in ESRI Modelbuilder, a component of Arcview 9 and provided as a deliverable for this project. The toolbox for the model and associated parameters can be optionally loaded along with the grid layers to re-run or tweak parameters of the model. Impacts of human activities and beneficial features of the landscape were considered. A rating system for each type of impact and vegetation condition was used to score each model component and then the values were combined and classified into impact level categories of high, moderate, low, or minimal. The impacts and vegetation conditions considered were distance from roads, road density, developed sites, riparian areas and hiding cover. While distance from roads was not applied directly to the final score it was used to define secure core areas which was then used to modify the rating of road density and hiding cover.

The following pages describe the primary component of the model, along with a flowchart from Modelbuilder illustrating the relationships, along with formal metadata and Grid processing steps.
Linkage Zone - Cover

LZ Cover extracts the cover types from the National Land Cover Data that could be considered as hiding cover. A 30 meter edge buffer was created that expanded the hiding cover areas. Finally, the hiding cover values were modified by their location either in or out of secure core areas. All areas, hiding, edge, or open were classified as hiding within secure core areas. Edge areas outside of a SCA were given an impact rating one level higher than hiding cover and open areas were given a rating of 2 levels higher than hiding cover.
LZ Cover

Data format: ArcToolBox Tool

Abstract: LZ Cover extracts the cover types from the National Land Cover Data that could be considered as hiding cover. A 30 meter edge was buffer was created that expanded the hiding cover areas. Finally, the hiding cover values were modified by their location either in or out of secure core areas. All areas, hiding, edge, or open were classified as hiding within secure core areas. Edge areas outside of a SCA were given an impact rating one level higher than hiding cover and open areas were given a rating of 2 levels higher than hiding cover.

ISO and ESRI Metadata:
- Metadata Information
 * Last update: 20050520

Resource Identification Information:

Citation:
- **Title:** LZ Cover
- **Party responsible for the resource:**
 - **Individual's name:** Joe Grigsby
 - **Organization's name:** Geodata Services, Inc.
- **Contact's position:**
- **Contact's role:**

Contact information:
- **Phone:**
 - **Voice:** 406.721.8856
- **Fax:**
- **Address:**
 - **Delivery point:**
Abstract:
LZ Cover extracts the cover types from the National Land Cover Data that could be considered as hiding cover. A 30 meter edge was buffer was created that expanded the hiding cover areas. Finally, the hiding cover values were modified by their location either in or out of secure core areas. All areas, hiding, edge, or open were classified as hiding within secure core areas. Edge areas outside of a SCA were given an impact rating one level higher than hiding cover and open areas were given a rating of 2 levels higher than hiding cover.

Resource constraints:
Constraints:
Limitations of use:

Distribution Information:
Distributor:
Available format:
Format name: ArcToolBox Tool
Variables

sca
Data Type: Composite Geodataset
Value: sca

Input true raster or constant value (3)
Data Type: Composite Geodataset
Value: 10

NLCD_D2
Data Type: Composite Geodataset
Value: NLCD_D2

Input true raster or constant value (2)
Data Type: Composite Geodataset
Value: 100

Input false raster or constant value (2)
Data Type: Composite Geodataset
Value: 10000

Con_NLCD_D21
Data Type: Raster Dataset
Value: C:\Data\ITD2\Temp\con_nlcd_d21

Input true raster or constant value
Data Type: Composite Geodataset
Value: 10

Expand_Con_N1
Data Type: Raster Dataset
Value: C:\Data\ITD2\Temp\expand_con_n1

Con_Con_NLCD1
Data Type: Raster Dataset
Value: C:\Data\ITD2\Temp\con_con_nlcd1

Cover
Data Type: Raster Dataset
Value: C:\Data\ITD2\LZModel\Cover\cover

Processes

Con

Tool Name: Con
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Conditional\Con

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input conditional raster</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>NLCD_D2</td>
</tr>
<tr>
<td>Input true raster or constant value</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>100</td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\Temp\con_nlcd_d21</td>
</tr>
<tr>
<td>Input false raster or constant value</td>
<td>Input</td>
<td>Optional</td>
<td>Composite Geodataset</td>
<td>10000</td>
</tr>
<tr>
<td>Expression</td>
<td>Input</td>
<td>Optional</td>
<td>SQL Expression</td>
<td>"Value" = 41 OR "Value" = 42 OR "Value" = 43 OR "Value" = 91</td>
</tr>
</tbody>
</table>

Messages:

Executing (Con): Con NLCD_D2 100
C:\Data\ITD2\Temp\Con_NLCD_D21 10000 ""Value" = 41 OR "Value" = 42 OR "Value" = 43 OR "Value" = 91"

Start Time: Mon Nov 07 16:32:02 2005
Executed (Con) successfully.

End Time: Mon Nov 07 16:32:49 2005 (Elapsed Time: 47.00 seconds)

Expand

Tool Name: Expand
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Generalization\Expand

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input raster</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\Temp\con_nlcd_d21</td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\Temp\expand_con_n1</td>
</tr>
<tr>
<td>Number of cells</td>
<td>Input</td>
<td>Required</td>
<td>Long</td>
<td>1</td>
</tr>
<tr>
<td>Zone values</td>
<td>Input</td>
<td>Required</td>
<td>Multiple Value</td>
<td>100</td>
</tr>
</tbody>
</table>

Messages:

Executing (Expand): Expand C:\Data\ITD2\Temp\con_nlcd_d21
C:\Data\ITD2\Temp\Expand_Con_N1 1 100

Start Time: Mon Nov 07 16:32:50 2005

Executed (Expand) successfully.

End Time: Mon Nov 07 16:33:13 2005 (Elapsed Time: 23.00 seconds)

Con (2)

Tool Name: Con
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Conditional\Con

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
</table>

181
Input conditional raster

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input conditional raster</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\Temp\con_nlcd_d21</td>
</tr>
</tbody>
</table>

Input true raster or constant value

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input true raster or constant value</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>10</td>
</tr>
</tbody>
</table>

Output raster

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\Temp\con_con_nlcd1</td>
</tr>
</tbody>
</table>

Input false raster or constant value

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input false raster or constant value</td>
<td>Input</td>
<td>Optional</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\Temp\expand_con_n1</td>
</tr>
</tbody>
</table>

Expression

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expression</td>
<td>Input</td>
<td>Optional</td>
<td>SQL Expression</td>
<td>VALUE = 100</td>
</tr>
</tbody>
</table>

Messages:

Executing (Con (2)): Con C:\Data\ITD2\Temp\con_nlcd_d21 10 C:\Data\ITD2\Temp\Con_Con_NLCD1 C:\Data\ITD2\Temp\expand_con_n1 "VALUE = 100"

Start Time: Mon Nov 07 16:33:14 2005

Executed (Con (2)) successfully.

End Time: Mon Nov 07 16:34:14 2005 (Elapsed Time: 1 minutes 0 seconds)

Con (3)

Tool Name: Con

Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Conditional\Con

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input conditional raster</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>sca</td>
</tr>
<tr>
<td>Input true raster or</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>10</td>
</tr>
<tr>
<td>constant value</td>
<td>Output</td>
<td>Required Raster Dataset</td>
<td>C:\Data\ITD2\LZModel\Cover\cover</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>-------------------------</td>
<td>-----------------------------------</td>
<td></td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required Raster Dataset</td>
<td>C:\Data\ITD2\LZModel\Cover\cover</td>
<td></td>
</tr>
<tr>
<td>Input false raster or constant value</td>
<td>Input</td>
<td>Optional Composite Geodataset</td>
<td>C:\Data\ITD2\Temp\con_con_nlcd1</td>
<td></td>
</tr>
<tr>
<td>Expression</td>
<td>Input</td>
<td>Optional SQL Expression</td>
<td>Value = 1</td>
<td></td>
</tr>
</tbody>
</table>

Messages:

Executing (Con (3)): Con sca 10
C:\Data\ITD2\LZModel\Cover\cover
C:\Data\ITD2\Temp\con_con_nlcd1 "Value = 1"

Start Time: Mon Nov 07 16:34:15 2005

Executed (Con (3)) successfully.

End Time: Mon Nov 07 16:35:12 2005 (Elapsed Time: 57.00 seconds)
Linkage Zone – HIZ

Defines Human Impact Zones around developed sites. A high impact zone layer was generated by buffering all developed sites point and polygon features. Two additional impact zones, each 120 meters wide, are then delineated around the high impact zone polygons. These additional rings are then assigned medium and low impact values moving outward from the high impact zone.
LZ_HIZ

Data format: ArcToolBox Tool

Abstract: Defines Human Impact Zones around developed sites. A high impact zone layer was generated by buffering all developed sites point and polygon features. Two additional impact zones, each 120 meters wide, are then delineated around the high impact zone polygons. These additional rings are then assigned medium and low impact values moving outward from the high impact zone.

ISO and ESRI Metadata:

- Metadata Information
- Resource Identification Information
- Distribution Information

Metadata elements shown with blue text are defined in the International Organization for Standardization's (ISO) document 19115 Geographic Information - Metadata. Elements shown with green text are defined by ESRI and will be documented as extensions to the ISO 19115. Elements shown with a green asterisk (*) will be automatically updated by ArcCatalog.

Metadata Information

*Last update: 20051215

Back to Top

Resource Identification Information:

Citation:

Title: LZ_HIZ

Party responsible for the resource:

Individual's name: Joe Grigsby
Organization's name: Geodata Services, Inc.
Contact's position: GIS Analyst
Contact's role:

Contact information:

Phone:
Voice: 406.721.8865
Fax: 406.721.1023

Address:

Delivery point:
104 South Ave E.
City: Missoula
Administrative area: MT
Postal code: 59801
Country: USA
e-mail address: kwall@geodata-mt.com

Descriptive keywords:
 Keywords: developed sites, Cumulative Effects Modeling, human influence zone, habitat reduction

Abstract:
Defines Human Impact Zones around developed sites. A high impact zone layer was generated by buffering all developed sites point and polygon features. Two additional impact zones, each 120 meters wide, are then delineated around the high impact zone polygons. These additional rings are then assigned medium and low impact values moving outward from the high impact zone.

Resource constraints:
Constraints:
 Limitations of use:

Distribution Information:
Distributor:
 Available format:
 Format name: ArcToolBox Tool

Back to Top
Variables

HIZ_high2dissolve

Data Type: Feature Layer
Value: HIZ_high2dissolve

Output direction raster

Data Type: Raster Dataset
Value:

Messages:

The value is empty.

HIZ_temp1

Data Type: Raster Dataset
Value: C:\Data\ITD2\Temp\hiz_temp1

HIZ

Data Type: Raster Dataset
Value: C:\Data\ITD2\LZModel\HIZ\hiz

Processes

Euclidean Distance

Tool Name: Euclidean Distance
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst\Tools.tbx\Distance\EucDistance

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input raster or feature</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>HIZ_high2dissolve</td>
</tr>
</tbody>
</table>
Source Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Input/Output</th>
<th>Required</th>
<th>Type</th>
<th>Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output distance raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster</td>
<td>C:\Data\ITD2\Temp\hiz_temp1</td>
</tr>
<tr>
<td>Maximum distance</td>
<td>Input</td>
<td>Optional</td>
<td>Double</td>
<td>240</td>
</tr>
<tr>
<td>Output cell size</td>
<td>Input</td>
<td>Optional</td>
<td>Analysis cell size</td>
<td>30</td>
</tr>
<tr>
<td>Output direction raster</td>
<td>Output</td>
<td>Optional</td>
<td>Raster</td>
<td>Dataset</td>
</tr>
</tbody>
</table>

Messages:

Executing (Euclidean Distance): EucDistance HIZ_high2dissolve C:\Data\ITD2\Temp\hiz_temp1 240 30 #

Start Time: Fri Dec 09 15:00:00 2005

Executed (Euclidean Distance) successfully.

End Time: Fri Dec 09 15:01:38 2005 (Elapsed Time: 1 minutes 38 seconds)

Reclassify

Tool Name: Reclassify
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Reclass\Reclassify

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input raster</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\Temp\hiz_temp1</td>
</tr>
<tr>
<td>Reclass field</td>
<td>Input</td>
<td>Required</td>
<td>Field</td>
<td>Value</td>
</tr>
<tr>
<td>Reclassification</td>
<td>Input</td>
<td>Required</td>
<td>Remap</td>
<td>0 100000;0 120 10000;120 240 1000;NODATA 10</td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\LZModel\HIZ\hiz</td>
</tr>
<tr>
<td>Change missing values to NoData</td>
<td>Input</td>
<td>Optional</td>
<td>Boolean</td>
<td>false</td>
</tr>
</tbody>
</table>
Messages:

Executing (Reclassify): Reclassify C:\Data\ITD2\Temp\hiz_temp1 Value "0 100000;0 120 10000;120 240 1000;NODATA 10"
C:\Data\ITD2\LZModel\HIZ\hiz DATA

Start Time: Fri Dec 09 15:01:38 2005

Executed (Reclassify) successfully.

End Time: Fri Dec 09 15:02:52 2005 (Elapsed Time: 1 minutes 14 seconds)
This model generates an approximate or potential riparian zone grid based on proximity to streams and elevation gradient. This method provides a better approximation of the extent of riparian areas in mountainous and topographically diverse regions than the common approach of applying a constant buffer along all water courses. A constant buffer would tend to over-estimate the extent of riparian areas where stream gradients and banks are steeper. The process follows the method outlined in the masters thesis "Identification of Potential Linkage Zones for Grizzly Bears in the Swan-Clearwater Valley Using GIS", P. Sandstrom, 1996.
LZ Riparian

Data format: ArcToolBox Tool

Abstract: This model generates an approximate or potential riparian zone grid based on proximity to streams and elevation gradient. This method provides a better approximation of the extent of riparian areas in mountainous and topographically diverse regions than the common approach of applying a constant buffer along all water courses. A constant buffer would tend to over-estimate the extent of riparian areas where stream gradients and banks are steeper. The process follows the method outlined in the masters thesis "Identification of Potential Linkage Zones for Grizzly Bears in the Swan-Clearwater Valley Using GIS", P. Sandstrom, 1996.

ISO and ESRI Metadata:

- **Metadata Information**
- **Resource Identification Information**
- **Distribution Information**

Metadata elements shown with blue text are defined in the International Organization for Standardization's (ISO) document 19115 Geographic Information - Metadata. Elements shown with green text are defined by ESRI and will be documented as extensions to the ISO 19115. Elements shown with a green asterisk (*) will be automatically updated by ArcCatalog.

Metadata Information

Last update: 20051214

Resource Identification Information:

Citation:

- **Title:** LZ Riparian

Party responsible for the resource:

- **Individual's name:** Joe Grigsby
- **Organization's name:** Geodata Services, Inc.
- **Contact's position:** GIS Analyst
- **Contact's role:**

Contact information:

- **Phone:**
 - **Voice:** 406.721.8865
 - **Fax:** 406.721.1023

Address:

- **Delivery point:**
 104 South Ave E.
Abstract:
This model generates an approximate or potential riparian zone grid based on proximity to streams and elevation gradient. This method provides a better approximation of the extent of riparian areas in mountainous and topographically diverse regions than the common approach of applying a constant buffer along all water courses. A constant buffer would tend to over-estimate the extent of riparian areas where stream gradients and banks are steeper. The process follows the method outlined in the masters thesis "Identification of Potential Linkage Zones for Grizzly Bears in the Swan-Clearwater Valley Using GIS", P. Sandstrom, 1996.

Resource constraints:
Constraints:
Limitations of use:

Distribution Information:
Distributor:
Available format:
Format name: ArcToolBox Tool
Variables

NHDWB_D2_gt30H
Data Type: Feature Layer
Value: NHDWB_D2_gt30H

Feature_NHDW1
Data Type: Raster Dataset
Value: C:\Data\ITD2\NHD_Hydro\NHD\feature_nhdw1

Output raster
Data Type: Raster Dataset
Value: C:\Data\ITD2\NHD_Hydro\NHD\isnull_featu1

NED integer
Data Type: Composite Geodataset
Value: NED integer

NHD_D2.shp
Data Type: Feature Layer
Value: C:\Data\ITD2\NHD_Hydro\NHD\NHD_D2.shp

EucAllo_NHD_1
Data Type: Raster Dataset
Value: C:\Data\ITD2\NHD_Hydro\NHD\eucallo_nhd_1

Minus_nedint1
Data Type: Raster Dataset
Value: C:\Data\ITD2\NED\minus_nedint1

Input true raster or constant value (3)
Data Type: Composite Geodataset
Value: 1

rip_zones
Data Type: Raster Dataset
Value: C:\Data\ITD2\NED\con_minus_ne1

rip_nolakes

Data Type: Raster Dataset
Value: C:\Data\ITD2\NHD_Hydro\NHD\con_isnull_f1

rip_1

Data Type: Raster Dataset
Value: C:\Data\ITD2\NHD_Hydro\NHD\isnull_con_i1

Input true raster or constant value

Data Type: Composite Geodataset
Value: 10

Input false raster or constant value

Data Type: Composite Geodataset
Value: 1

Riparian

Data Type: Raster Dataset
Value: C:\Data\ITD2\LZModel\Riparian\riparian

Output distance raster

Data Type: Raster Dataset
Value:

Messages:
The value is empty.

Output direction raster

Data Type: Raster Dataset
Value:

Messages:
The value is empty.
Feature to Raster (2)

Tool Name: Feature to Raster
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Conversion Tools.tbx\To Raster\FeatureToRaster

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input features</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>NHDBW_D2_gt30H</td>
</tr>
<tr>
<td>Field</td>
<td>Input</td>
<td>Required</td>
<td>Field</td>
<td>FType</td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\NHD_Hydro\NHD\feature_nhdw1</td>
</tr>
<tr>
<td>Output cell size</td>
<td>Input</td>
<td>Optional</td>
<td>Analysis cell size</td>
<td>30</td>
</tr>
</tbody>
</table>

Messages:

Executing (Feature to Raster (2)): FeatureToRaster NHDBW_D2_gt30H FType c:\data\itd2\NHD_Hydro\NHD\feature_nhdw1 30

Start Time: Thu Nov 03 13:12:23 2005

Executed (Feature to Raster (2)) successfully.

End Time: Thu Nov 03 13:12:27 2005 (Elapsed Time: 4.00 seconds)

Is Null

Tool Name: Is Null
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Math\Logical\IsNull

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input raster</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\NHD_Hydro\NHD\feature_nhdw1</td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\NHD_Hydro\NHD\isnull_featu1</td>
</tr>
</tbody>
</table>
Messages:
Executing (Is Null): IsNull
C:\Data\ITD2\NHD_Hydro\NHD\feature_nhdw1
c:\data\itd2\NHD_Hydro\NHD\isnull_featu1
Start Time: Thu Nov 03 13:12:27 2005
Executed (Is Null) successfully.
End Time: Thu Nov 03 13:12:40 2005 (Elapsed Time: 13.00 seconds)

Euclidean Allocation
Tool Name: Euclidean Allocation
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Distance\EucAllocation

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input raster or feature source data</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\NHD_Hydro\NHD\NHD_D2.shp</td>
</tr>
<tr>
<td>Output allocation raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\NHD_Hydro\NHD\eucallo_nhd_1</td>
</tr>
<tr>
<td>Maximum distance</td>
<td>Input</td>
<td>Optional</td>
<td>Double</td>
<td>210</td>
</tr>
<tr>
<td>Input value raster</td>
<td>Input</td>
<td>Optional</td>
<td>Composite Geodataset</td>
<td>NED integer</td>
</tr>
<tr>
<td>Output cell size</td>
<td>Input</td>
<td>Optional</td>
<td>Analysis cell size</td>
<td>30</td>
</tr>
<tr>
<td>Source field</td>
<td>Input</td>
<td>Optional</td>
<td>Field</td>
<td>ComID</td>
</tr>
<tr>
<td>Output distance raster</td>
<td>Output</td>
<td>Optional</td>
<td>Raster Dataset</td>
<td></td>
</tr>
<tr>
<td>Output direction</td>
<td>Output</td>
<td>Optional</td>
<td>Raster Dataset</td>
<td></td>
</tr>
</tbody>
</table>
Messages:

Executing (Euclidean Allocation): EucAllocation
c:\data\itd2\NHD_Hydro\NHD\NHD_D2.shp
c:\data\itd2\NHD_Hydro\NHD\eucallo_nhd_1 210 "NED integer" 30 ComID
#

Start Time: Thu Nov 03 13:12:40 2005

Executed (Euclidean Allocation) successfully.

End Time: Thu Nov 03 13:14:40 2005 (Elapsed Time: 2 minutes 0 seconds)

Minus

Tool Name: Minus
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Math\Minus

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input raster or constant value 1</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>NED integer</td>
</tr>
<tr>
<td>Input raster or constant value 2</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\NHD_Hydro\NHD\eucallo_nhd_1</td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\NED\minus_nedint1</td>
</tr>
</tbody>
</table>

Messages:

Executing (Minus): Minus "NED integer"
C:\Data\ITD2\NHD_Hydro\NHD\eucallo_nhd_1
c:\data\itd2\NED\minus_nedint1

Start Time: Thu Nov 03 13:14:41 2005
Executed (Minus) successfully.

End Time: Thu Nov 03 13:15:01 2005 (Elapsed Time: 20.00 seconds)

Con

Tool Name: Con
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Conditional\Con

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input conditional raster</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\NED\minus_nedint1</td>
</tr>
<tr>
<td>Input true raster or constant value</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>1</td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\NED\con_minus_ne1</td>
</tr>
<tr>
<td>Input false raster or constant value</td>
<td>Input</td>
<td>Optional</td>
<td>Composite Geodataset</td>
<td></td>
</tr>
<tr>
<td>Expression</td>
<td>Input</td>
<td>Optional</td>
<td>SQL Expression</td>
<td>VALUE < 8</td>
</tr>
</tbody>
</table>

Messages:

Executing (Con): Con C:\Data\ITD2\NED\minus_nedint1 1
c:\data\itd2\NED\con_minus_ne1 # "VALUE < 8"

Start Time: Thu Nov 03 13:15:02 2005

Executed (Con) successfully.

End Time: Thu Nov 03 13:15:35 2005 (Elapsed Time: 33.00 seconds)

Con (2)

Tool Name: Con
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Conditional\Con

Parameters:
<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conditional</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\NHD_Hydro\NHD\isnull_feat1</td>
</tr>
<tr>
<td>raster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input true</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\NED\con_minus_ne1</td>
</tr>
<tr>
<td>raster or constant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\NHD_Hydro\NHD\con_isnull_f1</td>
</tr>
<tr>
<td>raster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input false</td>
<td>Input</td>
<td>Optional</td>
<td>Composite Geodataset</td>
<td></td>
</tr>
<tr>
<td>raster or constant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>value</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expression</td>
<td>Input</td>
<td>Optional</td>
<td>SQL Expression</td>
<td></td>
</tr>
</tbody>
</table>

Messages:

Executing (Con (2)): Con C:\Data\ITD2\NHD_Hydro\NHD\isnull_feat1
C:\Data\ITD2\NED\con_minus_ne1
c:\data\itd2\NHD_Hydro\NHD\con_isnull_f1 # #

Start Time: Thu Nov 03 13:15:35 2005

Executed (Con (2)) successfully.

End Time: Thu Nov 03 13:16:04 2005 (Elapsed Time: 29.00 seconds)

Is Null (2)

Tool Name: Is Null
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst
Tools.tbx\Math\Logical\IsNull

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\NHD_Hydro\NHD\con_isnull_f1</td>
</tr>
<tr>
<td>raster</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\NHD_Hydro\NHD\isnull_con_i1</td>
</tr>
</tbody>
</table>
Messages:

Executing (Is Null (2)): IsNull
C:\Data\ITD2\NHD_Hydro\NHD\con_isnull_f1
c:\data\itd2\NHD_Hydro\NHD\isnull_con_i1

Start Time: Thu Nov 03 13:16:04 2005

Executed (Is Null (2)) successfully.

End Time: Thu Nov 03 13:16:19 2005 (Elapsed Time: 15.00 seconds)

Con (3)

Tool Name: Con

Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Conditional\Con

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input conditional raster</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\NHD_Hydro\NHD\isnull_con_i1</td>
</tr>
<tr>
<td>Input true raster or constant value</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>10</td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\LZModel\Riparian\riparian</td>
</tr>
<tr>
<td>Input false raster or constant value</td>
<td>Input</td>
<td>Optional</td>
<td>Composite Geodataset</td>
<td>1</td>
</tr>
<tr>
<td>Expression</td>
<td>Input</td>
<td>Optional</td>
<td>SQL Expression</td>
<td>Value = 1</td>
</tr>
</tbody>
</table>

Messages:

Executing (Con (3)): Con C:\Data\ITD2\NHD_Hydro\NHD\isnull_con_i1 10 C:\Data\ITD2\LZModel\Riparian\riparian 1 "Value = 1"
Start Time: Thu Nov 03 13:18:41 2005

Executed (Con (3)) successfully.

End Time: Thu Nov 03 13:19:07 2005 (Elapsed Time: 26.00 seconds)
Secure core areas (SCA) are delineated based on distance from roads. The euclidian distance to the nearest road segment is calculated for each grid cell and then reclassified as either "In SCA" (greater than 500 meters from a road), or "Out of SCA" (within 500 meters of a road). The secure core area designation is then used to modify the impacts of other factors.
Data format: ArcToolBox Tool

Abstract: Secure core areas (SCA) are delineated based on distance from roads. The euclidian distance to the nearest road segment is calculated for each grid cell and then reclassified as either "In SCA" (greater than 500 meters from a road), or "Out of SCA" (within 500 meters of a road). The secure core area designation is then used to modify the impacts of other factors.

ISO and ESRI Metadata:
- Metadata Information
- Resource Identification Information
- Distribution Information

Metadata elements shown with blue text are defined in the International Organization for Standardization's (ISO) document 19115 Geographic Information - Metadata. Elements shown with green text are defined by ESRI and will be documented as extensions to the ISO 19115. Elements shown with a green asterisk (*) will be automatically updated by ArcCatalog.

Metadata Information

*Last update: 20051216

Resource Identification Information:

Citation:
- Title: LZ SCA
- Party responsible for the resource:
- Individual's name: Joe Grigsby
- Organization's name: Geodata Services, Inc.
- Contact's position: GIS Analyst
- Contact's role:

Contact information:
- Phone:
- Voice: 406.721.8865
- Fax: 406.721.1023

Address:
- Delivery point: 104 South Ave. E.
- City: Missoula
Secure core areas (SCA) are delineated based on distance from roads. The euclidian distance to the nearest road segment is calculated for each grid cell and then reclassified as either "In SCA" (greater than 500 meters from a road), or "Out of SCA" (within 500 meters of a road). The secure core area designation is then used to modify the impacts of other factors.

Resource constraints:
Constraints:
Limitations of use:
Variables

StrMap-detailed
Data Type: Feature Layer
Value: StrMap-detailed

Output direction raster
Data Type: Raster Dataset
Value:

Messages:

The value is empty.

EucDist_StrM1
Data Type: Raster Dataset
Value: C:\Data\ITD2\Roads\eucdist_strm1

SCA
Data Type: Raster Dataset
Value: C:\Data\ITD2\LZModel\SCA\sca

Processes

Euclidean Distance
Tool Name: Euclidean Distance
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Distance\EucDistance

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input raster or feature</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>StrMap-detailed</td>
</tr>
</tbody>
</table>
source data

<table>
<thead>
<tr>
<th>Output distance raster</th>
<th>Output</th>
<th>Required</th>
<th>Raster Dataset</th>
<th>C:\Data\ITD2\Roads\eucdist strm1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum distance</td>
<td>Input</td>
<td>Optional</td>
<td>Double</td>
<td></td>
</tr>
<tr>
<td>Output cell size</td>
<td>Input</td>
<td>Optional</td>
<td>Analysis cell size</td>
<td>30</td>
</tr>
<tr>
<td>Output direction raster</td>
<td>Output</td>
<td>Optional</td>
<td>Raster Dataset</td>
<td></td>
</tr>
</tbody>
</table>

Messages:

Executing (Euclidean Distance): EucDistance StrMap-detailed
C:\Data\ITD2\Roads\eucdist strm1 # 30 #

Start Time: Fri Nov 04 13:44:41 2005

Executed (Euclidean Distance) successfully.

End Time: Fri Nov 04 13:45:59 2005 (Elapsed Time: 1 minutes 18 seconds)

Reclassify

Tool Name: Reclassify
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Reclass\Reclassify

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input raster</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\Roads\eucdist strm1</td>
</tr>
<tr>
<td>Reclass field</td>
<td>Input</td>
<td>Required</td>
<td>Field</td>
<td>Value</td>
</tr>
<tr>
<td>Reclassification</td>
<td>Input</td>
<td>Required</td>
<td>Remap</td>
<td>0 500 10;500 25000 1</td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\LZModel\SCA\sca</td>
</tr>
<tr>
<td>Change missing values to NoData</td>
<td>Input</td>
<td>Optional</td>
<td>Boolean</td>
<td>false</td>
</tr>
</tbody>
</table>
Messages:

Executing (Reclassify): Reclassify
C:\Data\ITD2\Roads\eucdist_strm1 Value "0 500 10;500 25000 1"
C:\Data\ITD2\LZModel\SCA\sca DATA

Start Time: Fri Nov 04 13:45:59 2005

Executed (Reclassify) successfully.

End Time: Fri Nov 04 13:46:36 2005 (Elapsed Time: 37.00 seconds)
Total motorized access route density (TMAR) is the road density calculated for the one mile circular area around each grid cell in the area of interest. The calculated road density is then classified into 4 categories - 0 miles/sq. mile, 0.01 - 1 miles/sq mile, 1.01 - 2 miles/sq mile, and > 2 miles/sq mile. Impact values are assigned to each category and then modified based on whether they are in or out of secure core areas (SCA). Impact values for areas out of SCA are increased by one level, and areas within an SCA retain the original value.
Abstract: Total motorized access route density (TMAR) is the road density calculated for the one mile circular area around each grid cell in the area of interest. The calculated road density is then classified into 4 categories - 0 miles/sq. mile, 0.01 - 1 miles/sq mile, 1.01 - 2 miles/sq mile, and > 2 miles/sq mile. Impact values are assigned to each category and then modified based on whether they are in or out of secure core areas (SCA). Impact values for areas out of SCA are increased by one level, and areas within an SCA retain the original value.

ISO and ESRI Metadata:
- Metadata Information
- Resource Identification Information
- Distribution Information

Metadata elements shown with blue text are defined in the International Organization for Standardization's (ISO) document 19115 Geographic Information - Metadata. Elements shown with green text are defined by ESRI and will be documented as extensions to the ISO 19115. Elements shown with a green asterisk (*) will be automatically updated by ArcCatalog.

Metadata Information

*Last update: 20051214

Resource Identification Information:

Citation:
- **Title:** LZ TMAR

- **Party responsible for the resource:**
 - **Individual's name:** Joe Grigsby
 - **Organization's name:** Geodata Services, Inc.
 - **Contact's position:** GIS Analyst
 - **Contact's role:**

Contact information:
- **Phone:** 406.721.8865
- **Voice:** 406.721.8865
- **Fax:** 406.721.1023

Address:
- **Delivery point:**
104 South Ave E.

City: Missoula
Administrative area: MT
Postal code: 59801
Country: USA
e-mail address: kwall@geodata-mt.com

Descriptive keywords:
Keywords: TMAR, total motorized access routes, SCA, secure core areas, roads, trails, road density

Abstract:
Total motorized access route density (TMAR) is the road density calculated for the one mile circular area around each grid cell in the area of interest. The calculated road density is then classified into 4 categories - 0 miles/sq. mile, 0.01 - 1 miles/sq mile, 1.01 - 2 miles/sq mile, and > 2 miles/sq mile. Impact values are assigned to each category and then modified based on whether they are in or out of secure core areas (SCA). Impact values for areas out of SCA are increased by one level, and areas within an SCA retain the original value.

Resource constraints:
Constraints:
Limitations of use:

Distribution Information:
Distributor:
Available format:
Format name: ArcToolBox Tool

Back to Top
Variables

TMAR_roads&trails
Data Type: Composite Geodataset
Value: StrMap-detailed

Feature_StrM1
Data Type: Raster Dataset
Value: C:\Data\ITD2\Roads\feature_strm1

Thin_Feature1
Data Type: Raster Dataset
Value: C:\Data\ITD2\Roads\thin_feature1

FocalSt_Thin1
Data Type: Raster Dataset
Value: C:\Data\ITD2\Roads\focalst_thin1

Reclass_Foca1
Data Type: Raster Dataset
Value: C:\Data\ITD2\Roads\reclass_foca1

SCA
Data Type: Composite Geodataset
Value: sca

TMAR
Data Type: Raster Dataset
Value: C:\Data\ITD2\LZModel\TMAR\tmar

Processes

Feature to Raster
Tool Name: Feature to Raster
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Conversion Tools.tbx\To Raster\FeatureToRaster

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input features</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>StrMap-detailed</td>
</tr>
<tr>
<td>Field</td>
<td>Input</td>
<td>Required</td>
<td>Field</td>
<td>ObjectID</td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\Roads\feature_strm1</td>
</tr>
<tr>
<td>Output cell size</td>
<td>Input</td>
<td>Optional</td>
<td>Analysis cell size</td>
<td>30</td>
</tr>
</tbody>
</table>

Messages:
Executing (Feature to Raster): FeatureToRaster StrMap-detailed ObjectID C:\Data\ITD2\Roads\feature_strm1 30

Start Time: Mon Nov 07 13:06:07 2005

Executed (Feature to Raster) successfully.

End Time: Mon Nov 07 13:06:32 2005 (Elapsed Time: 25.00 seconds)

Thin
Tool Name: Thin
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Generalization\Thin

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input raster</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\Roads\feature_strm1</td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\Roads\thin_feature1</td>
</tr>
<tr>
<td>Background value</td>
<td>Input</td>
<td>Optional</td>
<td>String</td>
<td>NODATA</td>
</tr>
<tr>
<td>Filter input first</td>
<td>Input</td>
<td>Optional</td>
<td>Boolean</td>
<td>false</td>
</tr>
</tbody>
</table>
Shape for corners | Input | Optional | String | SHARP
Maximum thickness of input linear features | Input | Optional | Double | 45

Messages:
Executing (Thin): Thin C:\Data\ITD2\Roads\feature strm1 C:\Data\ITD2\Roads\thin_feature1 NODATA NO_FILTER SHARP 45
Start Time: Mon Nov 07 13:06:32 2005
Executed (Thin) successfully.
End Time: Mon Nov 07 13:06:51 2005 (Elapsed Time: 19.00 seconds)

Focal Statistics
Tool Name: Focal Statistics
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Neighborhood\FocalStatistics

Parameters:
<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input raster</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\Roads\thin_feature1</td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\Roads\focalst_thin1</td>
</tr>
<tr>
<td>Neighborhood</td>
<td>Input</td>
<td>Optional</td>
<td>Neighborhood</td>
<td>Circle 30 CELL</td>
</tr>
<tr>
<td>Statistics type</td>
<td>Input</td>
<td>Optional</td>
<td>String</td>
<td>SUM</td>
</tr>
<tr>
<td>Ignore NoData in calculations</td>
<td>Input</td>
<td>Optional</td>
<td>Boolean</td>
<td>false</td>
</tr>
</tbody>
</table>

Messages:
Executing (Focal Statistics): FocalStatistics C:\Data\ITD2\Roads\thin_feature1 C:\Data\ITD2\Roads\focalst_thin1
"Circle 30 CELL" SUM NODATA
Start Time: Mon Nov 07 13:06:51 2005

Executed (Focal Statistics) successfully.

End Time: Mon Nov 07 14:17:48 2005 (Elapsed Time: 1 hours 10 minutes 57 seconds)

Reclassify

Tool Name: Reclassify
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Reclass\Reclassify

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input raster</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\Roads\focalst_thin1</td>
</tr>
<tr>
<td>Reclass field</td>
<td>Input</td>
<td>Required</td>
<td>Field</td>
<td>Value</td>
</tr>
<tr>
<td>Reclassification</td>
<td>Input</td>
<td>Required</td>
<td>Remap</td>
<td>0 1;1 53 10;54 105 100;106 10000 1000;NODATA 1</td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\Roads\reclass_focal</td>
</tr>
<tr>
<td>Change missing values to NoData</td>
<td>Input</td>
<td>Optional</td>
<td>Boolean</td>
<td>false</td>
</tr>
</tbody>
</table>

Messages:

Executing (Reclassify): Reclassify C:\Data\ITD2\Roads\focalst_thin1
VALUE "0 1;1 53 10;54 105 100;106 10000 1000;NODATA 1"
C:\Data\ITD2\Roads\reclass_focal DATA

Start Time: Mon Nov 07 14:17:48 2005

Executed (Reclassify) successfully.

End Time: Mon Nov 07 14:18:08 2005 (Elapsed Time: 20.00 seconds)

Times
Tool Name: Times
Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Math\Times

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input raster or constant value 1</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\Roads\reclass_foca1</td>
</tr>
<tr>
<td>Input raster or constant value 2</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>sca</td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\LZModel\TMAR\tmar</td>
</tr>
</tbody>
</table>

Messages:

Executing (Times): Times C:\Data\ITD2\Roads\reclass_foca1 sca
C:\Data\ITD2\LZModel\TMAR\tmar
Start Time: Mon Nov 07 14:18:08 2005

Executed (Times) successfully.

End Time: Mon Nov 07 14:19:05 2005 (Elapsed Time: 57.00 seconds)
LZ – COMBINED IMPACTS

LZ Combined Impacts adds the impact values from the component models and classifies the resultant grid into impact categories of minimal (1), low (2), moderate (3), or high (4).
LZ Combined Impacts

Data format: ArcToolBox Tool

Abstract: LZ Combined Impacts adds the impact values from the component models and classifies the resultant grid into impact categories of minimal (1), low (2), moderate (3), or high (4).

ISO and ESRI Metadata:

- Metadata Information
- Resource Identification Information
- Distribution Information

Metadata elements shown with blue text are defined in the International Organization for Standardization's (ISO) document 19115 *Geographic Information - Metadata*. Elements shown with green text are defined by ESRI and will be documented as extensions to the ISO 19115. Elements shown with a green asterisk (*) will be automatically updated by ArcCatalog.

Metadata Information

Last update: 20051214

Back to Top

Resource Identification Information:

Citation:

- **Title:** LZ Combined Impacts
- **Party responsible for the resource:**
 - **Individual’s name:** Joe Grigsby
 - **Organization’s name:** Geodata Services, Inc.
 - **Contact’s position:** GIS Analyst
 - **Contact’s role:**

Contact information:

- **Phone:**
 - **Voice:** 406.721.8865
 - **Fax:** 406.721.1023

Address:

- **Delivery point:** 104 South Ave. E.
 - **City:** Missoula
- **Administrative area:** MT
- **Postal code:** 59801
Country: USA
e-mail address: kwall@geodata-mt.com

Descriptive keywords:
Keywords: cover, TMAR, total motorized access routes, SCA, secure core areas, riparian, HIZ, human impact zone

Abstract:
LZ Combined Impacts adds the impact values from the component models and classifies the resultant grid into impact categories of minimal (1), low (2), moderate (3), or high (4).

Resource constraints:

Constraints:
Limitations of use:

Distribution Information:

Distributor:
Available format:
Format name: ArcToolBox Tool

Back to Top
Variables

TMAR
Data Type: Composite Geodataset
Value: C:\Data\ITD2\LZModel\TMAR\tmar

Human Impact Zones
Data Type: Composite Geodataset
Value: C:\Data\ITD2\LZModel\HIZ\hiz

Hiding Cover
Data Type: Composite Geodataset
Value: C:\Data\ITD2\LZModel\Cover\cover

Riparian
Data Type: Composite Geodataset
Value: C:\Data\ITD2\LZModel\Riparian\riparian

comb_grids
Data Type: Raster Dataset
Value: C:\Data\ITD2\LZModel\comb_grids

score.dbf
Data Type: Table View
Value: C:\Data\ITD2\LZModel\score.dbf

comb_impacts
Data Type: Raster Dataset
Value: C:\Data\ITD2\LZModel\comb_impacts

Processes

Single Output Map Algebra
Tool Name: Single Output Map Algebra

Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Map Algebra\SingleOutputMapAlgebra

Parameters:

<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map Algebra expression</td>
<td>Input</td>
<td>Required</td>
<td>MapAlgebra Expression</td>
<td>C:\data\ITD2\LZModel\Riparian\riparian + C:\data\ITD2\LZModel\Cover\cover + C:\data\ITD2\LZModel\HIZ\hiz + C:\data\ITD2\LZModel\TMAR\tmar</td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\LZModel\comb_grids</td>
</tr>
<tr>
<td>Input raster or feature data</td>
<td>Input</td>
<td>Optional</td>
<td>Multiple Value</td>
<td>C:\Data\ITD2\LZModel\TMAR\tmar; C:\Data\ITD2\LZModel\HIZ\hiz; C:\Data\ITD2\LZModel\Cover\cover; C:\Data\ITD2\LZModel\Riparian\riparian</td>
</tr>
</tbody>
</table>

Messages:

Executing (Single Output Map Algebra): SingleOutputMapAlgebra
"C:\data\ITD2\LZModel\Riparian\riparian + C:\data\ITD2\LZModel\Cover\cover + C:\data\ITD2\LZModel\HIZ\hiz + C:\data\ITD2\LZModel\TMAR\tmar " C:\Data\ITD2\LZModel\comb_grids C:\Data\ITD2\LZModel\TMAR\tmar; C:\Data\ITD2\LZModel\HIZ\hiz; C:\Data\ITD2\LZModel\Cover\cover; C:\Data\ITD2\LZModel\Riparian\riparian

Start Time: Fri Dec 09 15:17:10 2005

Executed (Single Output Map Algebra) successfully.

End Time: Fri Dec 09 15:19:01 2005 (Elapsed Time: 1 minutes 51 seconds)

Reclass by Table

Tool Name: Reclass by Table

Tool Source: C:\Program Files\ArcGIS\ArcToolbox\Toolboxes\Spatial Analyst Tools.tbx\Reclass\ReclassByTable

Parameters:
<table>
<thead>
<tr>
<th>Name</th>
<th>Direction</th>
<th>Type</th>
<th>Data Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input raster</td>
<td>Input</td>
<td>Required</td>
<td>Composite Geodataset</td>
<td>C:\Data\ITD2\LZModel\comb_grids</td>
</tr>
<tr>
<td>Input remap table</td>
<td>Input</td>
<td>Required</td>
<td>Table View</td>
<td>C:\Data\ITD2\LZModel\score.dbf</td>
</tr>
<tr>
<td>From value field</td>
<td>Input</td>
<td>Required</td>
<td>Field</td>
<td>CIC2</td>
</tr>
<tr>
<td>To value field</td>
<td>Input</td>
<td>Required</td>
<td>Field</td>
<td>CIC2</td>
</tr>
<tr>
<td>Output value field</td>
<td>Input</td>
<td>Required</td>
<td>Field</td>
<td>code</td>
</tr>
<tr>
<td>Output raster</td>
<td>Output</td>
<td>Required</td>
<td>Raster Dataset</td>
<td>C:\Data\ITD2\LZModel\comb_impacts</td>
</tr>
<tr>
<td>Change missing values to NoData</td>
<td>Input</td>
<td>Optional</td>
<td>Boolean</td>
<td>false</td>
</tr>
</tbody>
</table>

Messages:
Executing (Reclass by Table): ReclassByTable
C:\Data\ITD2\LZModel\comb_grids C:\Data\ITD2\LZModel\score.dbf
CIC2 CIC2 code C:\Data\ITD2\LZModel\comb_impacts DATA
Start Time: Fri Dec 09 15:19:01 2005
Executed (Reclass by Table) successfully.
End Time: Fri Dec 09 15:19:36 2005 (Elapsed Time: 35.00 seconds)
ITD Tools

Data format: ArcToolBox Toolbox

Abstract: These tools are the modules of the Identification of Potential Linkages Zones model for grizzly bears. Impacts of human activities and beneficial features of the landscape were considered. A rating system for each type of impact and vegetation condition was used to score each model component and then the values were combined and classified into impact level categories of high, moderate, low, or minimal. The impacts and vegetation conditions considered were distance from roads, road density, developed sites, riparian areas and hiding cover. While distance from roads was not applied directly to the final score it was used to define secure core areas which was then used to modify the rating of road density and hiding cover. This model is based on the thesis "Identification of Potential Linkage Zones for Grizzly Bears in the Swan-Clearwater Valley Using GIS" by Per Lennart Sandstrom for his Masters of Science degree at the University of Montana, 1996.

ISO and ESRI Metadata:
- [Metadata Information](#)
- [Resource Identification Information](#)
- [Distribution Information](#)

Metadata elements shown with blue text are defined in the International Organization for Standardization's (ISO) document 19115 Geographic Information - Metadata. Elements shown with green text are defined by ESRI and will be documented as extensions to the ISO 19115. Elements shown with a green asterisk (*) will be automatically updated by ArcCatalog.

Metadata Information

Last update: 20050628

Back to Top

Resource Identification Information:

Citation:
- **Title:** ITD Tools

 Party responsible for the resource:
 Individual's name: Joe Grigsby
 Organization's name: Geodata Services, Inc.
 Contact's name: GIS Analyst
 Contact's position: GIS Analyst
 Contact's role:

Contact information:
- **Phone:**
Voice: 406.721.8865
Fax: 406.721.1023

Address:
Delivery point: 104 South Ave E.
City: Missoula
Administrative area: MT
Postal code: 59801
Country: USA
e-mail address: kwall@geodata-mt.com

Descriptive keywords:
Keywords: human activities, human impacts, road density, secure core area, developed site, hiding cover, riparian, linkage zone, NLCD, total motorized access routes, cumulative effects modeling, cover conditions, grizzly bear

Abstract:
These tools are the modules of the Identification of Potential Linkages Zones model for grizzly bears. Impacts of human activities and beneficial features of the landscape were considered. A rating system for each type of impact and vegetation condition was used to score each model component and then the values were combined and classified into impact level categories of high, moderate, low, or minimal. The impacts and vegetation conditions considered were distance from roads, road density, developed sites, riparian areas and hiding cover. While distance from roads was not applied directly to the final score it was used to define secure core areas which was then used to modify the rating of road density and hiding cover. This model is based on the thesis "Identification of Potential Linkage Zones for Grizzly Bears in the Swan-Clearwater Valley Using GIS" by Per Lennart Sandstrom for his Masters of Science degree at the University of Montana, 1996.

Resource constraints:
Constraints:
Limitations of use:

Distribution Information:

Distributor:
Available format:
Format name: ArcToolBox Toolbox

Back to Top